Fan, Jianqing; Jiang, Tiefeng Largest entries of sample correlation matrices from equi-correlated normal populations. (English) Zbl 1435.62077 Ann. Probab. 47, No. 5, 3321-3374 (2019). The authors proved two important theorems about the limiting distributions of the largest entry outside the diagonal of the sample covariance / correlation matrices generated by a random sample from a high-dimensional normal distribution, assuming that: the normal distribution has the equi-correlation structure (with parameter \(\rho\)), that \(p \to \infty\) and \(\log(p) = o(n^{1/3})\), where \(p\) is the random vector dimension and \(n\) is the number of observations. The theory developed is exemplified by means of an application to a statistical test involving a high-dimensional normal distribution (testing if the covariance matrix is diagonal). Finally, in the “discussions” subsection the authors conclude that behaviors of limiting distributions depend on the value of \(\rho\). The limits are the normal distribution if \(\rho\) is reasonably large; the limiting distributions are the extreme-value distribution if \(\rho\) is tiny. Moreover, the authors also figure out the regime to differentiate the two scenarios. Reviewer: Kévin Allan Sales Rodrigues (São Paulo) Cited in 12 Documents MSC: 62E20 Asymptotic distribution theory in statistics 62H10 Multivariate distribution of statistics 62H15 Hypothesis testing in multivariate analysis 60F05 Central limit and other weak theorems 62G32 Statistics of extreme values; tail inference Keywords:maximum sample correlation; phase transition; multivariate normal distribution; Gumbel distribution; Chen-Stein Poisson approximation × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: The Chen-Stein method. Ann. Probab. 17 9-25. · Zbl 0675.60017 · doi:10.1214/aop/1176991491 [2] Cai, T., Fan, J. and Jiang, T. (2013). Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14 1837-1864. · Zbl 1318.60017 [3] Cai, T. T. and Jiang, T. (2011). Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. Ann. Statist. 39 1496-1525. · Zbl 1220.62066 · doi:10.1214/11-AOS879 [4] Cai, T. T. and Jiang, T. (2012). Phase transition in limiting distributions of coherence of high-dimensional random matrices. J. Multivariate Anal. 107 24-39. · Zbl 1352.60006 · doi:10.1016/j.jmva.2011.11.008 [5] Chen, L. H. Y., Fang, X. and Shao, Q.-M. (2013). From Stein identities to moderate deviations. Ann. Probab. 41 262-293. · Zbl 1275.60029 · doi:10.1214/12-AOP746 [6] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786-2819. · Zbl 1292.62030 · doi:10.1214/13-AOS1161 [7] Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. · Zbl 0587.62097 [8] Fan, J., Shao, Q.-M. and Zhou, W.-X. (2018). Are discoveries spurious? Distributions of maximum spurious correlations and their applications. Ann. Statist. 46 989-1017. · Zbl 1402.62097 · doi:10.1214/17-AOS1575 [9] Jiang, T. (2004). The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab. 14 865-880. · Zbl 1047.60014 · doi:10.1214/105051604000000143 [10] Jiang, T. (2004). The limiting distributions of eigenvalues of sample correlation matrices. Sankhyā 66 35-48. · Zbl 1193.62018 [11] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics. Springer, New York. · Zbl 0518.60021 [12] Li, D., Liu, W.-D. and Rosalsky, A. (2010). Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix. Probab. Theory Related Fields 148 5-35. · Zbl 1210.62010 · doi:10.1007/s00440-009-0220-z [13] Li, D., Qi, Y. and Rosalsky, A. (2012). On Jiang’s asymptotic distribution of the largest entry of a sample correlation matrix. J. Multivariate Anal. 111 256-270. · Zbl 1275.62037 · doi:10.1016/j.jmva.2012.04.002 [14] Li, D. and Rosalsky, A. (2006). Some strong limit theorems for the largest entries of sample correlation matrices. Ann. Appl. Probab. 16 423-447. · Zbl 1098.60034 · doi:10.1214/105051605000000773 [15] Linnik, Y. V. (1961). On the probability of large deviations for the sums of independent variables. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II 289-306. Univ. California Press, Berkeley, CA. · Zbl 0107.13401 [16] Liu, W.-D., Lin, Z. and Shao, Q.-M. (2008). The asymptotic distribution and Berry-Esseen bound of a new test for independence in high dimension with an application to stochastic optimization. Ann. Appl. Probab. 18 2337-2366. · Zbl 1154.60021 · doi:10.1214/08-AAP527 [17] Muirhead, R. J. (2009). Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Statistics 197. Wiley, New York. · Zbl 0556.62028 [18] Shao, Q.-M. and Wang, Q. (2013). Self-normalized limit theorems: A survey. Probab. Surv. 10 69-93. · Zbl 1286.60029 · doi:10.1214/13-PS216 [19] Shao, Q.-M. and Zhou, W.-X. (2014). Necessary and sufficient conditions for the asymptotic distributions of coherence of ultra-high dimensional random matrices. Ann. Probab. 42 623-648. · Zbl 1354.60020 · doi:10.1214/13-AOP837 [20] Zhou, W. (2007). Asymptotic distribution of the largest off-diagonal entry of correlation matrices. Trans. Amer. Math. Soc. 359 5345-5363. · Zbl 1130.60032 · doi:10.1090/S0002-9947-07-04192-X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.