A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores. (English) Zbl 1433.62330

Summary: Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark states underpin some of the most celebrated advancements in super-resolution microscopy. While this stochastic behavior has been heavily exploited, full characterization of the underlying models can potentially drive forward further imaging methodologies. Under the assumption that fluorophores move between fluorescing and dark states as continuous time Markov processes, the goal is to use a sequence of images to select a model and estimate the transition rates. We use a hidden Markov model to relate the observed discrete time signal to the hidden continuous time process. With imaging involving several repeat exposures of the fluorophore, we show the observed signal depends on both the current and past states of the hidden process, producing emission probabilities that depend on the transition rate parameters to be estimated. To tackle this unusual coupling of the transition and emission probabilities, we conceive transmission (transition-emission) matrices that capture all dependencies of the model. We provide a scheme of computing these matrices and adapt the forward-backward algorithm to compute a likelihood which is readily optimized to provide rate estimates. When confronted with several model proposals, combining this procedure with the Bayesian Information Criterion provides accurate model selection.


62P30 Applications of statistics in engineering and industry; control charts
62M05 Markov processes: estimation; hidden Markov models
62H35 Image analysis in multivariate analysis


Full Text: DOI Euclid


[1] Baum, L. E. and Eagon, J. A. (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73 360-363. · Zbl 0157.11101
[2] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 1554-1563. · Zbl 0144.40902
[3] Baum, L. E. and Sell, G. R. (1968). Growth transformations for functions on manifolds. Pacific J. Math. 27 211-227. · Zbl 0165.22505
[4] Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41 164-171. · Zbl 0188.49603
[5] Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313 1642-1645.
[6] Ching, W., Fung, E. and Ng, M. (2003). Higher-order hidden Markov models with applications to DNA sequences. In Intelligent Data Engineering and Automated Learning. IDEAL 2003 (J. Liu, Y. Cheung and H. Yin, eds.). Lecture Notes in Computer Science 2690 535-539. Springer, Berlin, Heidelberg.
[7] Colquhoun, D., Hatton, C. J. and Hawkes, A. G. (2003). The quality of maximum likelihood estimates of ion channel rate constants. J. Physiol. 547 699-728.
[8] Colquhoun, D. and Hawkes, A. G. (1981). On the stochastic properties of single ion channels. Proc. R. Soc. Lond., B Biol. Sci. 211 205-235.
[9] Colquhoun, D., Hawkes, A. G. and Srodzinski, K. (1996). Joint distributions of apparent open and shut times of single-ion channels and maximum likelihood fitting of mechanisms. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 354 2555-2590. · Zbl 0887.60099
[10] Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D. T., Lippincott-Schwartz, J., Jones, G. E. and Heintzmann, R. (2011). Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9 195-200.
[11] Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. and Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8 1027-1036.
[12] Du Preez, J. (1998). Efficient training of high-order hidden Markov models using first-order representations. Comput. Speech Lang. 12 23-39.
[13] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. CRC Press, New York. · Zbl 0835.62038
[14] Epstein, M., Calderhead, B., Girolami, M. A. and Sivilotti, L. (2016). Bayesian statistical inference in ion-channel models with exact missed event correction. Biophys. J. 111 333-348.
[15] Greenfeld, M., Pavlichin, D. S., Mabuchi, H. and Herschlag, D. (2015). Single molecule analysis research tool (SMART): An integrated approach for analysing single molecule data. PLoS ONE 7 e30024.
[16] Ha, T. and Tinnefeld, P. (2012). Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63 595-617.
[17] Hawkes, A. G., Jalali, A. and Colquhoun, D. (1990). The distributions of the apparent open times and shut times in a single channel record when brief events cannot be detected. Philos. Trans. R. Soc. Lond. Ser. A 332 511-538. · Zbl 0724.92003
[18] Hawkes, A. G., Jalali, A. and Colquhoun, D. (1992). Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 337 383-404.
[19] Heilemann, M., Van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. and Sauer, M. (2008). Subdiffraction—resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47 6172-6176.
[20] Hess, S. T., Girirajan, T. P. K. and Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91 4258-4272.
[21] Huang, B., Bates, M. and Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78 993-1016.
[22] Jacquez, J. A. and Greif, P. (1985). Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design. Math. Biosci. 77 201-227. · Zbl 0581.93017
[23] Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P. and Simmel, F. C. (2010). Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10 4756-4761.
[24] Lee, L.-M. and Lee, J.-C. (2006). A study on high-order hidden Markov models and applications to speech recognition. In Advances in Applied Artificial Intelligence. IEA/AIE 2006 (M. Ali and R. Dapoigny, eds.). Lecture Notes in Computer Science 4031 682-690. Springer, Berlin, Heidelberg.
[25] Lee, S. H., Shin, J. Y., Lee, A. and Bustamante, C. (2012). Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA 109 17436-17441.
[26] Lehmann, M., Lichtner, G., Klenz, H. and Schmoranzer, J. (2016). Novel organic dyes for multicolor localization-based super-resolution microscopy. J. Biophotonics 9 161-170.
[27] Levinson, S. E., Rabiner, L. R. and Sondhi, M. M. (1983). An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62 1035-1074. · Zbl 0507.68058
[28] Lin, Y., Long, J. J., Huang, F., Duim, W. C., Kirschbaum, S., Zhang, Y., Schroeder, L. K., Rebane, A. A., Velasco, M. G. M. et al. (2015). Quantifying and optimizing single-molecule switching nanoscopy at high speeds. PLoS ONE 10 e0128135.
[29] Little, M. P., Heidenreich, W. F. and Li, G. (2010). Quantifying and optimizing single-molecule switching nanoscopy at high speeds. PLoS ONE 5 e8915.
[30] Liu, Y.-Y., Li, S., Li, F., Song, L. and Rehg, J. (2015). Efficient learning of continuous-time hidden Markov models for disease progression. In NIPS Proceedings 3600-3608.
[31] MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Monographs on Statistics and Applied Probability 70. CRC Press, London. · Zbl 0868.60036
[32] Mukamel, E., Babcock, H. and Zhuang, X. (2012). Statistical deconvolution for superresolution fluorescence microscopy. Biophys. J. 102 2391-2400.
[33] Nieuwenhuizen, R. P. J., Bates, M., Szymborska, A., Lidke, K. A., Rieger, B. and Stallinga, S. (2015). Quantitative localization microscopy: Effects of photophysics and labeling stoichiometry. PLoS ONE 10 e0127989.
[34] Ober, R. J., Ram, S. and Ward, E. S. (2004). Localization accuracy in single-molecule microscopy. Biophys. J. 87 1185-1200.
[35] Ober, R., Tahmasbi, A., Ram, S., Lin, Z. and Ward, E. (2015). Quantitative aspects of single-molecule microscopy: Information-theoretic analysis of single-molecule data. IEEE Signal Process. Mag. 32 58-69.
[36] Patel, L., Gustafsson, N., Lin, Y., Ober, R., Henriques, R. and Cohen, E. (2019). Supplement to “A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores.” DOI:10.1214/19-AOAS1240SUPPA, DOI:10.1214/19-AOAS1240SUPPB.
[37] Qin, F., Auerbach, A. and Sachs, F. (1996). Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70 264-280.
[38] Qin, F. and Li, L. (2004). Model-based fitting of single-channel dwell-time distributions. Biophys. J. 87 1657-1671.
[39] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 257-286.
[40] Ram, S., Ward, E. S. and Ober, R. J. (2013). A stochastic analysis of distance estimation approaches in single molecule microscopy: Quantifying the resolution limits of photon-limited imaging systems. Multidimens. Syst. Signal Process. 24 503-542. · Zbl 1268.93138
[41] Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E. and Spudich, J. A. (2000). Myosin-V stepping kinetics: A molecular model for processivity. Proc. Natl. Acad. Sci. USA 97 9482-9486.
[42] Rieger, B. and Stallinga, S. (2014). The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15 664-670.
[43] Rollins, G. C., Shin, J. Y., Bustamante, C. and Pressé, S. (2014). Stochastic approach to the molecular counting problem in superresolution microscopy. Proc. Natl. Acad. Sci. USA 112 110-118.
[44] Rothenberg, T. J. (1971). Identification in parametric models. Econometrica 39 577-591. · Zbl 0231.62081
[45] Rust, M. J., Bates, M. and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 793-795.
[46] Sage, D., Kirshner, H., Pengo, T., Stuurman, N., Min, J., Manley, S. and Usher, M. (2015). Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12 717-724.
[47] Sharonov, A. and Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103 18911-18916.
[48] Thompson, R. E., Larson, D. R. and Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82 2775-2783.
[49] Van de Linde, S. and Sauer, M. (2014). How to switch a fluorophore: From undesired blinking to controlled photoswitching. Chem. Soc. Rev. 43 1076-1087.
[50] Van de Linde, S., Wolter, S., Heilemann, M. and Sauer, M. (2010). The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J. Biotechnol. 149 260-266.
[51] Vogelsang, J., Steinhauer, C., Forthmann, C., Stein, I. H., Person-Skegro, B., Cordes, T. and Tinnefeld, P. (2010). Make them blink: Probes for super-resolution microscopy. ChemPhysChem 11 2475-2490.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.