Fast dynamic nonparametric distribution tracking in electron microscopic data. (English) Zbl 1433.62332

Summary: In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches.


62P30 Applications of statistics in engineering and industry; control charts
62G07 Density estimation


Full Text: DOI Euclid


[1] Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3-48. · Zbl 0930.60096 · doi:10.2307/3318611
[2] Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 246-254. · Zbl 0032.03702 · doi:10.1093/biomet/35.3-4.246
[3] Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA. · Zbl 0332.62039
[4] Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P. and Rotello, V. M. (2000). Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404 746-748.
[5] Brown, L., Cai, T., Zhang, R., Zhao, L. and Zhou, H. (2010). The root-unroot algorithm for density estimation as implemented via wavelet block thresholding. Probab. Theory Related Fields 146 401-433. · Zbl 1180.62055 · doi:10.1007/s00440-008-0194-2
[6] de Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82 339-350. · Zbl 0823.62072 · doi:10.1093/biomet/82.2.339
[7] Doucet, A., Gordon, N. J. and Krishnamurthy, V. (2001). Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49 613-624.
[8] Durbin, J. and Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84 669-684. · Zbl 0888.62086 · doi:10.1093/biomet/84.3.669
[9] Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with \(B\)-splines and penalties. Statist. Sci. 11 89-121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[10] Grzelczak, M., Vermant, J., Furst, E. M. and Liz-Marzán, L. M. (2010). Directed self-assembly of nanoparticles. ACS Nano 4 3591-3605.
[11] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82 35-45.
[12] Li, M., Schnablegger, H. and Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402 393-395.
[13] Lifshitz, I. and Slyozov, V. (1961). The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 35-50.
[14] Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control 24 36-50. · Zbl 0399.93054 · doi:10.1109/TAC.1979.1101943
[15] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351-357. · Zbl 0557.62036 · doi:10.1214/aos/1176346412
[16] Ma, J., Kockelman, K. M. and Damien, P. (2008). A multivariate Poisson-lognormal regression model for prediction of crash counts by severity using Bayesian methods. Accident Anal. Prev. 40 964-975.
[17] Mahalanobis, P. C. (1993). On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2 49-55. · Zbl 0015.03302
[18] Mena, R. H. and Ruggiero, M. (2016). Dynamic density estimation with diffusive Dirichlet mixtures. Bernoulli 22 901-926. · Zbl 1388.62099 · doi:10.3150/14-BEJ681
[19] Muneesawang, P. and Sirisathitkul, C. (2015). Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16 58-63.
[20] Park, C. (2014). Estimating multiple pathways of object growth using nonlongitudinal image data. Technometrics 56 186-199.
[21] Park, C., Huang, J., Huitink, D., Kundu, S., Mallick, B., Liang, H. and Ding, Y. (2012). A multi-stage, semi-automated procedure for analyzing the morphology of nanoparticles. IIE Trans. 44 507-522.
[22] Park, C., Huang, J., Ji, J. and Ding, Y. (2013). Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35 669-681.
[23] Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D. (2015). Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects. IEEE Trans. Pattern Anal. Mach. Intell. 37 611-624.
[24] Qian, Y., Huang, J. Z. and Ding, Y. (2017). Identifying multi-stage nanocrystal growth using in situ TEM video data. IISE Trans. 49 532-543.
[25] Qian, Y., Huang, J. Z., Li, X. and Ding, Y. (2016). Robust nanoparticles detection from noisy background by fusing complementary image information. IEEE Trans. Image Process. 25 5713-5726. · Zbl 1408.94547 · doi:10.1109/TIP.2016.2614127
[26] Qian, Y., Huang, J. Z., Park, C. and Ding, Y. (2019). Supplement to “Fast dynamic nonparametric distribution tracking in electron microscopic data.” DOI:10.1214/19-AOAS1245SUPPA, DOI:10.1214/19-AOAS1245SUPPB. · Zbl 1433.62332
[27] Rodriguez, A. and Ter Horst, E. (2008). Bayesian dynamic density estimation. Bayesian Anal. 3 339-365. · Zbl 1330.62180 · doi:10.1214/08-BA313
[28] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. Ser. B 53 683-690. · Zbl 0800.62219 · doi:10.1111/j.2517-6161.1991.tb01857.x
[29] Simonoff, J. S. (1983). A penalty function approach to smoothing large sparse contingency tables. Ann. Statist. 11 208-218. · Zbl 0527.62043 · doi:10.1214/aos/1176346071
[30] Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1996). BUGS 0.5: Bayesian inference using Gibbs sampling manual (versio ii). In MRC Biostatistics Unit 1-59. Institute of Public Health, Cambridge, UK.
[31] Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA. · Zbl 0813.62001
[32] Woehl, T. J., Park, C., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D. (2013). Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14 373-378.
[33] Zhang, C., Chen, N. and Li, Z. (2017). State space modeling of autocorrelated multivariate Poisson counts. IISE Trans. 49 518-531.
[34] Zheng, H., Smith, R. K., Jun, Y. W., Kisielowski, C., Dahmen, U. and Alivisatos, A. P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324 1309-1312.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.