zbMATH — the first resource for mathematics

A Bayesian mark interaction model for analysis of tumor pathology images. (English) Zbl 1433.62310
Summary: With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of \(188\) lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell-cell interactions in cancer progression.
62P10 Applications of statistics to biology and medical sciences; meta analysis
62H35 Image analysis in multivariate analysis
62H11 Directional data; spatial statistics
Full Text: DOI Euclid
[1] Amin, M. B., Tamboli, P., Merchant, S. H., Ordóñez, N. G., Ro, J., Ayala, A. G. and Ro, J. Y. (2002). Micropapillary component in lung adenocarcinoma: A distinctive histologic feature with possible prognostic significance. Amer. J. Surg. Pathol. 26 358-364.
[2] Avalos, G. and Bucci, F. (2014). Exponential decay properties of a mathematical model for a certain fluid-structure interaction. In New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Ser. 10 49-78. Springer, Cham. · Zbl 1383.35027
[3] Baddeley, A. (2010). Multivariate and marked point processes. In Handbook of Spatial Statistics (A. E. Gelfand, P. Diggle, P. Guttorp andM. Fuentes, eds.). Chapman & Hall/CRC Handb. Mod. Stat. Methods 371-402. CRC Press, Boca Raton, FL.
[4] Baddeley, A. and Turner, R. (2006). Modelling spatial point patterns in \(R\). In Case Studies in Spatial Point Process Modeling. Lect. Notes Stat. 185 23-74. Springer, New York. · Zbl 05243453
[5] Barletta, J. A., Yeap, B. Y. and Chirieac, L. R. (2010). Prognostic significance of grading in lung adenocarcinoma. Cancer 116 659-669.
[6] Beck, A. H., Sangoi, A. R., Leung, S., Marinelli, R. J., Nielsen, T. O., van de Vijver, M. J., West, R. B., van de Rijn, M. and Koller, D. (2011). Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Translational Med. 3 108-113.
[7] Besag, J. E. (1977). Comment on “Modelling spatial patterns.” J. Roy. Statist. Soc. Ser. B 39 193-195.
[8] Bognar, M. A. (2008). Bayesian modeling of continuously marked spatial point patterns. Comput. Statist. 23 361-379. · Zbl 1224.62092
[9] Borczuk, A. C., Qian, F., Kazeros, A., Eleazar, J., Assaad, A., Sonett, J. R., Ginsburg, M., Gorenstein, L. and Powell, C. A. (2009). Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Amer. J. Surg. Pathol. 33 462.
[10] Brambilla, E., Le Teuff, G., Marguet, S., Lantuejoul, S., Dunant, A., Graziano, S., Pirker, R., Douillard, J.-Y., Le Chevalier, T., Filipits, M. et al. (2016). Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer. J. Clin. Oncol. 34 1223-1230.
[11] Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J. et al. (2006). CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7 R100.
[12] Chulaevsky, V. (2014). Exponential decay of eigenfunctions in a continuous multi-particle Anderson model with sub-exponentially decaying interaction. Available at arXiv:1408.4646.
[13] Cox, T. F. (1979). A method for mapping the dense and sparse regions of a forest stand. Appl. Statist. 28 14-19.
[14] Cox, D. R. (1992). Regression models and life-tables In Breakthroughs in Statistics, Vol. II. Methodology and Distribution (S. Kotz and N. L. Johnson, eds.) 527-541. Springer, Berlin.
[15] Cox, T. F. and Lewis, T. (1976). A conditioned distance ratio method for analyzing spatial patterns. Biometrika 63 483-491. · Zbl 0343.62045
[16] Dale, M. R. (2000). Spatial Pattern Analysis in Plant Ecology. Cambridge Univ. Press, Cambridge.
[17] Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit: Analysis of a bivariate spatial point pattern. J. Neuroscience Methods 18 115-125.
[18] Diggle, P. J. and Cox, T. (1981). On sparse sampling methods and tests of independence for multivariate spatial point patterns. Bulletin Internat. Statist. Inst. 49 213-229.
[19] Diggle, P. J., Eglen, S. J. and Troy, J. B. (2006). Modelling the bivariate spatial distribution of amacrine cells. In Case Studies in Spatial Point Process Modeling. Lect. Notes Stat. 185 215-233. Springer, New York. · Zbl 05243463
[20] Diggle, P. J. and Milne, R. K. (1983). Bivariate Cox processes: Some models for bivariate spatial point patterns. J. Roy. Statist. Soc. Ser. B 45 11-21. · Zbl 0503.62086
[21] Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. J. Amer. Statist. Assoc. 97 611-631. · Zbl 1073.62545
[22] Gelfand, A. E., Diggle, P., Guttorp, P. and Fuentes, M. (2010). Handbook of Spatial Statistics. CRC Press, Boca Raton, FL. · Zbl 1188.62284
[23] Gelman, A., Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457-472. · Zbl 1386.65060
[24] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1279.62004
[25] Gillies, R. J., Verduzco, D. and Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12 487-493.
[26] Gleason, D. F. and Mellinger, G. T. (2002). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urology 167 953-958.
[27] Grabarnik, P., Myllymäki, M. and Stoyan, D. (2011). Correct testing of mark independence for marked point patterns. Ecol. Model. 222 3888-3894.
[28] Hammersley, J. M. and Clifford, P. (1971). Markov fields on finite graphs and lattices.
[29] Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell 144 646-674.
[30] Hughes, A. (1981a). Cat retina and the sampling theorem: The relation of transient and sustained brisk-unit cut-off frequency to \(\alpha\) and \(\beta \)-mode cell density. Experimental Brain Res. 42 196-202.
[31] Hughes, A. (1981b). Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurones. J. Comparative Neurology 197 303-339.
[32] Huh, J. W., Lee, J. H. and Kim, H. R. (2012). Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer. Archives of Surgery 147 366-372.
[33] Hui, E. E. and Bhatia, S. N. (2007). Micromechanical control of cell-cell interactions. Proc. Natn. Acad. Sci. 104 5722-5726.
[34] Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice. Wiley, Chichester. · Zbl 1197.62135
[35] Junttila, M. R. and de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501 346-354.
[36] Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L., Ljosa, V., Rueden, C., Eliceiri, K. W. andCarpenter, A. E. (2011). Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics 27 1179-1180.
[37] Kashima, Y. (2010). Exponential decay of correlation functions in many-electron systems. J. Math. Phys. 51 063521, 40. · Zbl 1311.82034
[38] Li, Q., Yi, F., Wang, T., Xiao, G. and Liang, F. (2017). Lung cancer pathological image analysis using a hidden Potts model. Cancer Informatics 16 1176935117711910.
[39] Li, Q., Wang, X., Liang, F. and Xiao, G. (2019). Supplement to “A Bayesian mark interaction model for analysis of tumor pathology images.” DOI:10.1214/19-AOAS1254SUPPA, DOI:10.1214/19-AOAS1254SUPPB.
[40] Liang, F. (2010). A double Metropolis-Hastings sampler for spatial models with intractable normalizing constants. J. Stat. Comput. Simul. 80 1007-1022. · Zbl 1233.62117
[41] Liang, F., Jin, I. H., Song, Q. and Liu, J. S. (2016). An adaptive exchange algorithm for sampling from distributions with intractable normalizing constants. J. Amer. Statist. Assoc. 111 377-393.
[42] Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. J. Roy. Statist. Soc. Ser. B 44 406-413.
[43] Luo, X., Zang, X., Yang, L., Huang, J., Liang, F., Canales, J. R., Wistuba, I. I., Gazdar, A., Xie, Y. andXiao, G. (2016). Comprehensive computational pathological image analysis predicts lung cancer prognosis. J. Thorac. Oncol. DOI:10.1016/j.jtho.2016.10.017.
[44] Mantovani, A., Sozzani, S., Locati, M., Allavena, P. and Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23 549-555.
[45] Mattfeldt, T., Eckel, S., Fleischer, F. and Schmidt, V. (2009). Statistical analysis of labelling patterns of mammary carcinoma cell nuclei on histological sections. J. Microsc. 235 106-118.
[46] Merlo, L. M., Pepper, J. W., Reid, B. J. and Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6 924-935.
[47] Møller, J., Pettitt, A. N., Reeves, R. and Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93 451-458. · Zbl 1158.62020
[48] Murray, I., Ghahramani, Z. and MacKay, D. (2012). MCMC for doubly-intractable distributions. Available at arXiv:1206.6848.
[49] Ogata, Y. and Tanemura, M. (1985). Estimation of interaction potentials of marked spatial point patterns through the maximum likelihood method. Biometrics 41 421-433. · Zbl 0607.62121
[50] Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V. J., Richardson, A. L. and Weinberg, R. A. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121 335-348.
[51] Peichl, L. and Wässle, H. (1981). Morphological identification of on-and off-centre brisk transient (Y) cells in the cat retina. Proc. Roy. Soc. London Ser. B, Biolog. Sci. 212 139-153.
[52] Penrose, O. and Lebowitz, J. L. (1974). On the exponential decay of correlation functions. Comm. Math. Phys. 39 165-184.
[53] Polyak, K., Haviv, I. and Campbell, I. G. (2009). Co-evolution of tumor cells and their microenvironment. Trends Genet. 25 30-38.
[54] Ren, Q., Banerjee, S., Finley, A. O. and Hodges, J. S. (2011). Variational Bayesian methods for spatial data analysis. Comput. Statist. Data Anal. 55 3197-3217. · Zbl 1271.62113
[55] Rincón, J., Ganahl, M. and Vidal, G. (2015). Lieb-Liniger model with exponentially decaying interactions: A continuous matrix product state study. Phys. Rev. B 92 115107.
[56] Ripley, B. D. (1977). Modelling spatial patterns. J. Roy. Statist. Soc. Ser. B 39 172-212. · Zbl 0369.60061
[57] Rockhill, R. L., Euler, T. and Masland, R. H. (2000). Spatial order within but not between types of retinal neurons. Proc. Natn. Acad. Sci. 97 2303-2307.
[58] Sabo, E., Beck, A. H., Montgomery, E. A., Bhattacharya, B., Meitner, P., Wang, J. Y. and Resnick, M. B. (2006). Computerized morphometry as an aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett’s esophagus. Lab. Investigation 86 1261.
[59] Segal, D. M. and Stephany, D. A. (1984). The measurement of specific cell: Cell interactions by dual-parameter flow cytometry. Cytometry A 5 169-181.
[60] Sertel, O., Kong, J., Catalyurek, U. V., Lozanski, G., Saltz, J. H. and Gurcan, M. N. (2009a). Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. J. Signal Processing Systems 55 169.
[61] Sertel, O., Kong, J., Shimada, H., Catalyurek, U. V., Saltz, J. H. and Gurcan, M. N. (2009b). Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development. Pattern Recognit. 42 1093-1103.
[62] Stoyan, D. and Penttinen, A. (2000). Recent applications of point process methods in forestry statistics. Statist. Sci. 15 61-78.
[63] Tabesh, A., Teverovskiy, M., Pang, H.-Y., Kumar, V. P., Verbel, D., Kotsianti, A. and Saidi, O. (2007). Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imag. 26 1366-1378.
[64] Tsao, M.-S., Marguet, S., Le Teuff, G., Lantuejoul, S., Shepherd, F. A., Seymour, L., Kratzke, R., Graziano, S. L., Popper, H. H., Rosell, R. et al. (2015). Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J. Clin. Oncol. 33 3439-3446.
[65] van Lieshout, M. N. M. and Baddeley, A. J. (1996). A nonparametric measure of spatial interaction in point patterns. Stat. Neerl. 50 344-361. · Zbl 0898.62118
[66] van Lieshout, M. N. M. and Baddeley, A. J. (1999). Indices of dependence between types in multivariate point patterns. Scand. J. Stat. 26 511-532. · Zbl 0942.62061
[67] Vaney, D. I., Peichl, L. and Boycott, B. (1981). Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. J. Comparative Neurology 199 373-391.
[68] Vincent, L. and Jeulin, D. (1989). Minimal paths and crack propagation simulations. Acta Stereologica 8 487-494.
[69] Waller, L. A. (2005). Bayesian thinking in spatial statistics. In Bayesian Thinking: Modeling and Computation. Handbook of Statist. 25 589-622. Elsevier/North-Holland, Amsterdam.
[70] Wang, S., Wang, T., Yang, L., YI, F., Luo, X., Yang, Y., Gazdar, A., Fujimoto, J., Wistuba, I. I., Yao, B. et al. (2018). ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by convolutional neural network. Available at arXiv:1809.10240.
[71] Wässle, H. and Illing, R.-B. (1981). Morphology and mosaic of on-and off-beta cells in the cat retina and some functional considerations. Proc. Roy. Soc. London Ser. B, Biolog. Sci. 212 177-195.
[72] Wässle, H., Peichl, L. and Boycott, B. B. (1981). Dendritic territories of cat retinal ganglion cells. Nature 292 344-345.
[73] Wässle, H. and Riemann, H. (1978). The mosaic of nerve cells in the mammalian retina. Proc. Roy. Soc. London Ser. B, Biolog. Sci. 200 441-461.
[74] Wiegand, T. and Moloney, K. A. (2004). Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104 209-229.
[75] Wiseman, B. S. and Werb, Z. (2002). Stromal effects on mammary gland development and breast cancer. Science 296 1046-1049.
[76] Xiao, G., Reilly, C. and Khodursky, A. B. (2009). Improved detection of differentially expressed genes through incorporation of gene locations. Biometrics 65 805-814. · Zbl 1172.62068
[77] Xiao, G., Wang, X. and Khodursky, A. B. (2011). Modeling three-dimensional chromosome structures using gene expression data. J. Amer. Statist. Assoc. 106 61-72. · Zbl 1396.62262
[78] Yu, K.-H., Zhang, C., Berry, G. J., Altman, R. B., Ré, C., Rubin, D. L. and Snyder, M. (2016). Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7.
[79] Yuan, Y., Failmezger, H., Rueda, O. M., Ali, H. R., Gräf, S., Chin, S.-F., Schwarz, R. F., Curtis, C., Dunning, M. J., Bardwell, H. et al. (2012). Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Translational Med. 4 157ra143.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.