zbMATH — the first resource for mathematics

Coupling of finite element and meshfree method for structure mechanics application: a review. (English) Zbl 07146455
74 Mechanics of deformable solids
76 Fluid mechanics
Full Text: DOI
[1] Alturi, S. N. A. and Zhu, T. [1998] “ A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech.22, 117-127. · Zbl 0932.76067
[2] Atluri, S. N., Liu, H. T. and Han, Z. D. [2006] “ Meshless local Petrov-Galerkin (MLPG) mixed difference method for solid mechanics,” Comput. Model. Eng. Sci.15, 1-16. · Zbl 1357.74074
[3] Belytschko, T., Lu, Y. Y. and Gu, L. [1994] “ Element free Galerkin methods,” Int. J. Numer. Meth. Eng.37, 229-256. · Zbl 0796.73077
[4] Belytschko, T., Organ, D. and Krongauz, Y. [1995] “ A coupled finite element-element free Galerkin method,” Comput. Mech.17, 186-195. · Zbl 0840.73058
[5] Belytschko, T., Liu, W. K. and Moran, B. [2000] Nonlinear Finite Elements for Continua and Structures. John Wiely & Sons Ltd., New York, USA. · Zbl 0959.74001
[6] Cai, Y., Zhuang, X. and Zhu, H. [2013] “ A generalized and efficient method for finite cover generation in the numerical manifold method,” Int. J. Comput. Methods10, 1350028. · Zbl 1359.65283
[7] Cao, Y. P. and Lu, J. [2004] “ A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve,” Acta Mater.52, 4023-4032.
[8] Chen, Jie, Wang, Hai and Wang, Jie [2014] “ Buckling and vibration analyses of composite laminates with weak interfaces by a coupled meshfree and finite element method,” Sci. Eng. Compos. Mater.
[9] Chen, J. S., Pan, C., Wu, C. T. and Liu, W. K. [1996] “ Reproducing kernel particle methods for large deformation analysis of nonlinear structures,” Comput. Meth. Appl. Mech. Eng.139, 195-227. · Zbl 0918.73330
[10] Chen, T. and Raju, I. S. [2003] “ A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problem,” Comput. Methods Appl. Mech. Eng.192, 4533-4550. · Zbl 1037.65115
[11] Chen, J. S., Asce, M., Hillman, M. and Chi, S. W. [2017] “ Meshfree methods: Progress made after 20 years,” J. Eng. Mech.143(4), 04017001, https://doi.org/10.1061/(ASCE) EM.1943-7889.0001176.
[12] Chen, X., Ogasawara, N., Zhao, M. and Chiba, N. [2007] “ On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials,” J. Mech. Phys. Solids55, 1618-1660. · Zbl 1176.74029
[13] Chollacoop, N., Dao, M. and Suresh, S. [2003] “ Depth-sensing instrumented indentation with dual sharp indenters,” Acta Mater.51, 3713-3729.
[14] Daxini, S. D. and Prajapati, J. M. [2014] “ A review on recent contribution of meshfree methods to structure and fracture mechanics applications,” Sci. World J.2014, 247172.
[15] Daxini, S. D. and Prajapati, J. [2017] “ Parametric shape optimization techniques based on Meshless methods: A review,” Struct. Multidisc. Optim.https://doi.org/10.1007/s00158-017-1702-8.
[16] Dolbow, J. and Belytschko, T. [1998] “ An introduction to programming the meshless element-free Galerkin method,” Arch. Comput. Mech.5, 207-241.
[17] Fahrenthold, E. P. and Horban, B. A. [1999] “ A hybrid particle-finite element method for hypervelocity impact simulation,” Int. J. Impact Eng.23, 237-248.
[18] Garg, S. and Pant, M. [2018] “ Meshfree Methods: A Comprehensive Review of Application,” Int. J. Comput. Methods15(3), 1830001. · Zbl 1404.74199
[19] Gong, S. G., Xie, G. L., Zhang, J. P., Nie, S. H. and Li, Y. M. [2009] “ Sensitivity analysis and shape optimization based on FE-EFG coupled method,” Res. Eng. Des.20, 117-128.
[20] Gu, Y. T. and Liu, G. R. [2001] “ A coupled elements free Galerkin/boundary element method for stress analysis of two-dimensional solids,” Comput. Methods Appl. Mech. Eng.190, 4405-4419.
[21] Gu, Y. T. and Liu, G. R. [2005] “ Meshless methods coupled with other numerical methods,” Tsinghua Sci. Technol.10, 8-15. · Zbl 1139.74443
[22] Gu, Y. T. and Zhang, L. C. [2008] “ Coupling of the meshfree and finite element methods for determination of the crack tip fields,” Eng. Fract. Mech.75, 986-1004.
[23] Haggag, F. M. [1993] “In-situ measurements of mechanical properties using novel automated ball indentation system,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ASTM STP, Vol. 1204, 27-44.
[24] Haggag, F. M., Nanstad, R. K., Hutton, J. T., Thomas, D. L. and Swain, R. L. [1990] “Use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials,” Applications of Automation Technology to Fatigue and Fracture Testing, ASTM STP, Vol. 1092, 188-208.
[25] Hegan, D. [1996] “ Element Free Galerkin methods in combination with finite element approaches,” Comput. Methods Appl. Mech. Eng.135, 143-166. · Zbl 0893.73063
[26] Hematiyan, M. R., Khosravifard, A. and Mohammadi, M. [2012] “ A general technique for coupling two arbitrary methods in stress analysis,” Int. J. Comput. Methods9(2). · Zbl 1359.74413
[27] Hureta, A. and Mendez, S. F. [2000] “Coupling element free Galerkin and finite element methods,” ECCOMAS 2000, CINMNE, Barcelona 11-14.
[28] Hureta, A. and Mendez, S. F. [2000] “ Enrichment and coupling of the finite element and meshless methods,” Int. J. Numer. Methods Eng.48, 1615-1636. · Zbl 0976.74067
[29] Huerta, A. and Mendez, S. F. [2004] “ A comparison of two formulations to blend finite elements and meshfree methods,” Comput. Methods Appl. Mech. Eng.193, 1105-1117. · Zbl 1059.65104
[30] Huges, T. J. R. [1987] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs.
[31] Idelsohn, S. R., Onate, E., Calvo, N. and Pin, F. D. [2003] “ The meshless finite element method,” Int. J. Numer. Meth. Eng.58(6), 893-912. · Zbl 1035.65129
[32] Jaskowiec, J. and Milewski, S. [2016] “ Coupling finite element method with meshless finite difference method in thermo mechanical problems,” Comput. Math. Appl.72, 2259-2279. · Zbl 1368.74061
[33] Johnson, G. R. [1994] “ Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations,” Nucl. Eng. Des.150, 265-274.
[34] Johnson, G. R., Stryk, R. A., Beissel, S. R. and Holmquist, T. J. [2002] “ An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation,” Int. J. Impact Eng.27(10), 997-1013.
[35] Johnson, G. R. and Stryk, R. A. [2003] “ Conversion of 3d distorted element method for hyper velocity impact simulation,” Int. J. Impact Eng.28, 947-966.
[36] Karutz, H., Chudoba, R. and Kratzig, W. B. [2002] “ Automatic adaptive generation of a coupled finite element/element free Galerkin discretization,” Finite Element Anal. Des.38, 1075-1091. · Zbl 0997.65136
[37] Kumar, S., Singh, I. V. and Mishra, B. K. [2014a] “ A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials,” Theor. Appl. Fract. Mech.70, 49-58.
[38] Kumar, S., Singh, I. V. and Mishra, B. K. [2014b] “ A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials,” Theor. Appl. Fract. Mech.72, 121-135.
[39] Lacroix, D. and Bouillard, Ph. [2003] “ Improved sensitivity analysis by a coupled FE-EFG method,” Comput. Struct.81, 2431-2439.
[40] Lee, H., Lee, J. H. and Pharr, G. M. [2005] “ A numerical approach to spherical indentation techniques for material property evaluation,” J. Mech. Phys. Solids53, 2037-2069. · Zbl 1162.74413
[41] Lee, J. H., Kim, T. and Lee, H. [2010] “ A study on robust indentation techniques to evaluate elastic-plastic properties of metals,” Int. J. Solids Struct.47, 647-664. · Zbl 1183.74187
[42] Li, S. and Liu, W. K. [2004] Meshfree Particle Methods. Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-540-71471-2. · Zbl 1073.65002
[43] Liu, G. R. and Gu, Y. T. [2000] “ Meshless Local Petrov-Galerkin(MLPG) method in combination with finite element and boundary element approaches,” Comput. Mech.26(6), 536-546. · Zbl 0990.74070
[44] Liu, G. R. [2003] Mesh Free Methods: Moving beyond the Finite Element Method, 2nd edn. CRC Press. · Zbl 1031.74001
[45] Liu, M. B., Liu, G. R., Zong, Z. and Lam, K. Y. [2003] “ Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology,” Comput. Fluids32(3), 305-322. · Zbl 1009.76525
[46] Liu, W. K., Jun, S. and Zhang, Y. F. [1995] “ Reproducing kernel particle methods,” Int. J. Numer. Meth. Fluids20, 1081-1106. · Zbl 0881.76072
[47] Liu, W. K., Uras, R. A. and Chen, Y. [1997] “ Enrichment of the finite element method with reproducing kernel particle method,” J. Appl. Mech.135, 143-166. · Zbl 0920.73366
[48] Monaghan, J. J. [1988] “ An introduction to SPH,” Comput. Phys. Commun.48, 89-96. · Zbl 0673.76089
[49] Nguyen, V. P., Rabczuk, T., Bordas, S. and Duflot, M. [2008] “ Meshless methods: A review and computer implementation aspects,” Math. Comput. Simul.79(3), 763-813. · Zbl 1152.74055
[50] Pan, X. F. and Yuan, H. [2010] “ Computational algorithm and application of element-free Galerkin methods for non-local damage models,” Eng. Fract. Mech.77, 2640-2653.
[51] Pant, M., Singh, I. V. and Mishra, B. K. [2013] “ A novel enrichment criterion for modeling kinked cracks using element free Galerkin method,” Int. J. Mech. Sci.68, 140-149.
[52] Pathak, H., Singh, A. and Singh, I. V. [2014] “ Fatigue crack growth simulations of homogeneous and biomaterial interfacial cracks using element free Galerkin method,” Appl. Math. Model.38, 3093-3123. · Zbl 1449.74191
[53] Fries, T. P. and Matthies, H. G. [2004] “Classification and overview of meshfree methods,” Braunschweig Revised, Institutf├╝rWissenschaftlichesRechnen. · Zbl 1354.76105
[54] Phu, N. V., Rabczuk, T., Bordas, S. and Duflot, M. [2008] “ Meshless methods: A review and computer implementation aspects,” Math. Comput. Simul.79, 763-813. · Zbl 1152.74055
[55] Rabczuk, T., Areias, P. M. A. and Belytschko, T. [2007] “ A simplified meshfree method for shear bands with cohesive surfaces,” Int. J. Numer. Methods Eng.69, 993-1021. · Zbl 1194.74536
[56] Rabczuk, T. and Belytschko, T. [2007] “ A three-dimensional large deformation meshfree method for arbitrary evolving cracks,” Comput. Methods Appl. Mech. Eng.196, 2777-2799. · Zbl 1128.74051
[57] Rabczuk, T., Belytschko, T. and Xiao, S. P. [2004] “ Stable particle methods based on Lagrangian kernels,” Comput. Methods Appl. Mech. Eng.193, 1035-1063. · Zbl 1060.74672
[58] Rabczuk, T. and Eibl, J. [2006] “ Modeling dynamic failure of concrete with meshfree particle methods,” Int. J. Impact Eng.32, 1878-1897.
[59] Rabczuk, T., Xiao, S. P. and Sauer, M. [2006] “ Coupling of mesh-free methods with finite elements: Basic concepts and test results,” Commun. Numer. Meth. Eng.22, 1031-1065. · Zbl 1109.65082
[60] Rao, B. N. [2011] “ Coupled meshfree and fractal finite element method for unbounded problems,” Comput. Geotech.38, 697-708.
[61] Kumar, Sachin, Singh, I. V. and Mishra, B. K. [2014] “ A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials,” Theor. Appl. Fract. Mech.72, 121-135.
[62] Shedbale, A. S., Singh, I. V. and Mishra, B. K. [2016] “ A coupled FE-EFG approach for modeling crack growth in ductile materials,” Fatigue Fract. Eng. Mater. Struct.39(10), 1204-1225.
[63] Shedbale, A. S., Singh, I. V., Mishra, B. K. and Sharma, K. [2016] “ Evaluation of mechanical properties using spherical ball identation and coupled finite element-element free Galerkin approach,” Mech. Adv. Mater. Struct.23(7), 832-843.
[64] Shedbale, A. S., Singh, I. V., Mishra, B. K. and Sharma, K. [2017] “ Ductile failure modeling and simulations using coupled FE-EFG approach,” Int. J. Fract.203(1-2), 183-209.
[65] Singh, I. V., Mishra, B. K. and Pant, M. [2011] “ An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method,” Int. J. Fract.167(2), 157-171. · Zbl 1283.74099
[66] Sun, S. H., Nguyen, T. T., Atroschchenko, E. and Bui, T. Q. [2018] “ Structural shape optimization by IGABEM and particle swarm optimization algorithm,” Eng. Anal. Boundary Elements88, 26-40. · Zbl 1403.74234
[67] Ullah, Z., Coombs, W. M. and Augarde, C. E. [2013] “ An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems,” Comput. Methods Appl. Mech. Eng.267, 111-132. · Zbl 1286.74111
[68] Vuyst, T. D., Vignjevic, R. and Campbell, J. C. [2005] “ Coupling between meshless and finite element methods,” Int. J. Impact Eng.31, 1054-1064.
[69] Wang, H. P., Wu, C. T. and Botkin, M. E. [2009] “ A coupled meshfree/finite element method for automotive crashworthiness simulations,” Int. J. Impact Eng.36, 1210-1222.
[70] Wang, D., Gao, Y., Wang, J. and Xia, D. [2014] “ EFG-FE coupling method,” Applied Mechanics and Materials577, 263-266.
[71] Xiao, Q. Z. and Dhanasekar, M. [2002] “ Coupling of FE and EFG using collocation approach,” Adv. Eng. Softw.33, 507-515. · Zbl 1024.65113
[72] Zhang, Y., Ge, W., Tong, X. and Ye, M. [2017] “ Topology optimization of structures with coupled finite element-Element-free Galerkin method,” Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci.232(5), 731-745.
[73] Zhuang, X., Augarde, C. and Mathisen, K. [2012] “ Fracture modeling using meshless methods and level sets in 3D: framework and modeling,” Int. J. Numer. Methods Eng.92, 969-998. · Zbl 1352.74312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.