×

zbMATH — the first resource for mathematics

Adaptive finite element method of lines with local mesh refinement in maximum norm based on element energy projection method. (English) Zbl 07146462
MSC:
65 Numerical analysis
76 Fluid mechanics
Software:
COLSYS; FEAPpv
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ascher, U., Christiansen, J. and Russell, R. D. [1981] “ Collocation software for boundary-value odes,” ACM Trans. Math. Softw.7(2), 209-222. · Zbl 0455.65067
[2] Babuška, I. and Rheinboldt, W. C. [1978] “ A-posteriori error estimates for the finite element method,” Int. J. Numer. Meth. Eng.12(10), 1597-1615. · Zbl 0396.65068
[3] Babuška, I. and Rheinboldt, W. C. [1979] “ Adaptive approaches and reliability estimations in finite element analysis,” Comput. Meth. Appl. Mech. Eng.17, 519-540. · Zbl 0396.73077
[4] Babuška, I., Strouboulis, T. and Upadhyay, C. S. [1994] “ A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles,” Comput. Meth. Appl. Mech. Eng.114(3-4), 307-378.
[5] Boroomand, B. and Zienkiewicz, O. C. [1997] “ Recovery by equilibrium in patches (REP),” Int. J. Numer. Meth. Eng.40(1), 137-164.
[6] Bao, G., Hu, G. and Liu, D. [2012] “ An \(h\)-adaptive finite element solver for the calculations of the electronic structures,” J. Comput. Phys.231(14), 4967-4979. · Zbl 1245.65125
[7] Bangerth, W. and Rannacher, R. [2013] Adaptive Finite Element Methods for Differential Equations (Birkhäuser, Basel, Switzerland). · Zbl 1020.65058
[8] Castellazzi, G., De Miranda, S. and Ubertini, F. [2010] “ Adaptivity based on the recovery by compatibility in patches,” Finite Elements in Analysis and Design46(5), 379-390. · Zbl 1398.74313
[9] Chen, L., Rabczuk, T., Bordas, S. P. A., Liu, G. R., Zeng, K. Y. and Kerfriden, P. [2012] “ Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth,” Comput. Meth. Appl. Mech. Eng.209, 250-265. · Zbl 1243.74170
[10] De Sr Gago, J. P., Kelly, D. W., Zienkiewicz, O. C. and Babuska, I. [1983] “ A posteriori error analysis and adaptive processes in the finite element method: Part II — Adaptive mesh refinement,” Int. J. Numer. Meth. Eng.19(11), 1621-1656. · Zbl 0534.65069
[11] Dong, Y., Xing, Q., Fang, N. and Yuan, S. [2016] “ Applications of FEMOL and EEP self-adaptive method in static analysis of asphalt pavement structures,” Functional Pavement Design: Proc. 4th Chinese-European Workshop on Functional Pavement Design (4th CEW 2016, Delft, The Netherlands, , 29 June-1 July 2016) (CRC Press), p. 39.
[12] Fidkowski, K. J. and Darmofal, D. L. [2011] “ Review of output-based error estimation and mesh adaptation in computational fluid dynamics,” AIAA J.49(4), 673-694.
[13] Grätsch, T. and Bathe, K. J. [2005] “ A posteriori error estimation techniques in practical finite element analysis,” Comput. Struct.83(4-5), 235-265.
[14] Hartmann, R. and Houston, P. [2002] “ Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations,” J. Comput. Phys.183(2), 508-532. · Zbl 1057.76033
[15] Hu, S. and Moran, B. [2005] “ Cracking analysis of fracture mechanics by the finite element method of lines (FEMOL),” Acta Mech. Sin.21(5), 495-502. · Zbl 1200.74122
[16] Houston, P., Schötzau, D. and Wihler, T. P. [2007] “ Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems,” Math. Models Meth. Appl. Sci.17(1), 33-62. · Zbl 1116.65115
[17] Naga, A. and Zhang, Z. [2004] “ A posteriori error estimates based on the polynomial preserving recovery,” SIAM J. Numer. Anal.42(4), 1780-1800. · Zbl 1078.65098
[18] Nguyen-Xuan, H., Liu, G. R., Bordas, S., Natarajan, S. and Rabczuk, T. [2013] “ An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order,” Comput. Meth. Appl. Mech. Eng.253, 252-273. · Zbl 1297.74126
[19] Pang, Z. [1993] “ The error estimate of finite element method of lines,” Math. Numer. Sin.15(1), 110-120(in Chinese). · Zbl 0850.65227
[20] Payen, D. J. and Bathe, K. J. [2011] “ The use of nodal point forces to improve element stresses,” Comput. Struct.89(5-6), 485-495.
[21] Timoshenko, S. P. and Goodier, J. N. [1970] Theory of Elasticity, 3rd edition (McGraw-Hill, New York).
[22] Ubertini, F. [2004] “ Patch recovery based on complementary energy,” Int. J. Numer. Meth. Eng.59(11), 1501-1538. · Zbl 1041.74549
[23] Wiberg, N. E. and Li, X. D. [1994] “ Superconvergent patch recovery of finite-element solution and a posteriori L2 norm error estimate,” Commun. Numer. Meth. Eng.10(4), 313-320. · Zbl 0802.65108
[24] Xu, Y. and Yuan, S. [2007] “ Stress intensity factors calculation in anti-plane fracture problem by orthogonal integral extraction method based on FEMOL,” Acta Mech. Solida Sin.20(1), 87-94.
[25] Yuan, S. [1993] The Finite Element Method of Lines (Science Press, Beijing, New York).
[26] Yuan, S. and Wang, M. [2004] “ An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM,” Eng. Mech.21(2), 1-9(in Chinese).
[27] Yuan, S., Wang, M. and Wang, X. [2007] “ An element-energy-projection method for super-convergent solutions in two-dimensional finite element method of lines,” Eng. Mech.24(1), 1-10(in Chinese).
[28] Yuan, S., Xing, Q. Y., Wang, X. and Ye, K. S. [2008] “ Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order,” Appl. Math. Mech.29(5), 591-602. · Zbl 1231.65122
[29] Yuan, S., Fang, N., Wang, X., Ye, K. S. and Xing, Q. Y. [2011] “ New progress in self-adaptive analysis of two-dimensional finite element method of lines,” Eng. Mech.21(3), 1-8(in Chinese).
[30] Yuan, S., Wang, Y. and Ye, K. [2013] “ An adaptive FEM for buckling analysis of nonuniform Bernoulli-Euler members via the element energy projection technique,” Math. Proble. Eng., http://dx.doi.org/10.1155/2013/461832. · Zbl 1296.74036
[31] Yuan, S., Du, Y., Xing, Q. Y. and Ye, K. S. [2014] “ Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method,” Appl. Math. Mech.35(10), 1223-1232. · Zbl 1298.65116
[32] Zienkiewicz, O. C. and Zhu, J. Z. [1987] “ A simple error estimator and adaptive procedure for practical engineering analysis,” Int. J. Numer. Meth. Eng.24(2), 337-357. · Zbl 0602.73063
[33] Zienkiewicz, O. C. and Zhu, J. Z. [1992a] “ The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique,” Int. J. Numer. Meth. Eng.33(7), 1331-1364. · Zbl 0769.73084
[34] Zienkiewicz, O. C. and Zhu, J. Z. [1992b] “ The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity,” Int. J. Numer. Meth. Eng.33(7), 1365-1382. · Zbl 0769.73085
[35] Zienkiewicz, O. C., Boroomand, B. and Zhu, J. Z. [1999] “ Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems,” Comput. Meth. Appl. Mech. Eng.176(1-4), 111-125. · Zbl 0955.74069
[36] Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. [2013] The Finite Element Method: Its Basis and Fundamentals, 7th Edition (Elsevier, Singapore). · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.