×

zbMATH — the first resource for mathematics

Causal propagation of constraints in bimetric relativity in standard 3+1 form. (English) Zbl 1427.83071
Summary: The goal of this work was to investigate the propagation of the constraints in the ghost-free bimetric theory where the evolution equations are in standard 3+1 form. It is established that the constraints evolve according to a first-order symmetric hyperbolic system whose characteristic cone consists of the null cones of the two metrics. Consequently, the constraint evolution equations are well-posed, and the constraints stably propagate.
MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35Q75 PDEs in connection with relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Hassan, SF; Rosen, RA, Bimetric Gravity from Ghost-free Massive Gravity, JHEP, 02, 126 (2012) · Zbl 1309.83083
[2] Hassan, SF; Rosen, RA, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP, 04, 123 (2012) · Zbl 1348.83065
[3] Hassan, SF; Kocic, M., On the local structure of spacetime in ghost-free bimetric theory and massive gravity, JHEP, 05, 099 (2018) · Zbl 1391.83092
[4] Hassan, SF; Lundkvist, A., Analysis of constraints and their algebra in bimetric theory, JHEP, 08, 182 (2018) · Zbl 1396.83034
[5] M. Kocic, Geometric mean of bimetric spacetimes, arXiv:1803.09752 [INSPIRE].
[6] Rham, C.; Gabadadze, G., Generalization of the Fierz-Pauli Action, Phys. Rev., D 82, 044020 (2010)
[7] Rham, C.; Gabadadze, G.; Tolley, AJ, Resummation of Massive Gravity, Phys. Rev. Lett., 106, 231101 (2011)
[8] Hassan, SF; Rosen, RA, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett., 108, 041101 (2012)
[9] Hadamard, J., Sur les Problémes aux Dérivées Partielles et Leur Signification Physique, Princeton Univ. Bull., 13, 49 (1902)
[10] J.W. York Jr., Kinematics and Dynamics of General Relativity, pp. 83-126 [INSPIRE].
[11] Frittelli, S., Note on the propagation of the constraints in standard (3+1) general relativity, Phys. Rev., D 55, 5992 (1997)
[12] Hassan, SF; Rosen, RA, On Non-Linear Actions for Massive Gravity, JHEP, 07, 009 (2011) · Zbl 1298.81468
[13] I.G. Macdonald, Symmetric functions and orthogonal polynomials, AMS (1998). · Zbl 0887.05053
[14] Creminelli, P.; Nicolis, A.; Papucci, M.; Trincherini, E., Ghosts in massive gravity, JHEP, 09, 003 (2005)
[15] Hassan, SF; Schmidt-May, A.; Strauss, M., On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP, 05, 086 (2013) · Zbl 1342.83534
[16] Schmidt-May, A.; Strauss, M., Recent developments in bimetric theory, J. Phys., A 49, 183001 (2016) · Zbl 1345.83003
[17] Hassan, SF; Schmidt-May, A.; Strauss, M., Particular Solutions in Bimetric Theory and Their Implications, Int. J. Mod. Phys., D 23, 1443002 (2014) · Zbl 1314.83039
[18] Damour, T.; Kogan, II, Effective Lagrangians and universality classes of nonlinear bigravity, Phys. Rev., D 66, 104024 (2002)
[19] R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE]. · Zbl 1152.83320
[20] É. Gourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture Notes in Physics, Springer Berlin Heidelberg (2012). · Zbl 1254.83001
[21] M. Alcubierre, Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, Oxford University Press, Oxford (2012). · Zbl 1246.83002
[22] M. Shibata, Numerical Relativity, 100 years of general relativity, World Scientific Publishng Company Pte. Limited (2015).
[23] C. Bona, C. Palenzuela-Luque and C. Bona-Casas, Elements of Numerical Relativity and Relativistic Hydrodynamics: From Einstein’s Equations to Astrophysical Simulations, Lecture Notes in Physics, Springer Berlin Heidelberg (2009). · Zbl 1176.85001
[24] Shibata, M.; Nakamura, T., Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev., D 52, 5428 (1995) · Zbl 1250.83027
[25] Arnowitt, RL; Deser, S.; Misner, CW, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev., 116, 1322 (1959) · Zbl 0092.20704
[26] A. Anderson and J.W. York Jr., Hamiltonian time evolution for general relativity, Phys. Rev. Lett.81 (1998) 1154 [gr-qc/9807041] [INSPIRE].
[27] M. Kocic, A. Lundkvist and F. Torsello, On the ratio of lapses in bimetric relativity, arXiv:1903.09646 [INSPIRE].
[28] R. Courant and D. Hilbert, Methods of Mathematical Physics, Methods of Mathematical Physics, vol. 2, Interscience Publishers (1962). · Zbl 0099.29504
[29] T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer, Cambridge University Press (2010). · Zbl 1198.83001
[30] Geroch, R., Faster Than Light?, AMS/IP Stud. Adv. Math., 49, 59 (2011) · Zbl 1232.83004
[31] P. Lax, Hyperbolic Partial Differential Equations, Courant Lecture Notes in Mathematics, American Mathematical Society (2006). · Zbl 1113.35002
[32] J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, American Mathematical Society (2012). · Zbl 1252.35004
[33] Izumi, K.; Ong, YC, An analysis of characteristics in nonlinear massive gravity, Class. Quant. Grav., 30, 184008 (2013) · Zbl 1277.83084
[34] Camanho, XO; Lucena Gómez, G.; Rahman, R., Causality Constraints on Massive Gravity, Phys. Rev., D 96, 084007 (2017)
[35] Bellazzini, B.; Riva, F.; Serra, J.; Sgarlata, F., Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett., 120, 161101 (2018)
[36] Hinterbichler, K.; Joyce, A.; Rosen, RA, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev., D 97, 125019 (2018)
[37] Bonifacio, J.; Hinterbichler, K.; Joyce, A.; Rosen, RA, Massive and Massless Spin-2 Scattering and Asymptotic Superluminality, JHEP, 06, 075 (2018) · Zbl 1395.83083
[38] Hinterbichler, K.; Joyce, A.; Rosen, RA, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP, 03, 051 (2018) · Zbl 1388.83590
[39] M. Düll, F.P. Schuller, N. Stritzelberger and F. Wolz, Gravitational closure of matter field equations, Phys. Rev.D 97 (2018) 084036 [arXiv:1611.08878] [INSPIRE].
[40] Schuller, FP; Witte, C., How quantizable matter gravitates: A practitioner’s guide, Phys. Rev., D 89, 104061 (2014)
[41] S. Frittelli and O.A. Reula, First order symmetric hyperbolic Einstein equations with arbitrary fixed gauge, Phys. Rev. Lett.76 (1996) 4667 [gr-qc/9605005] [INSPIRE].
[42] A. Anderson and J.W. York Jr., Fixing Einstein’s equations, Phys. Rev. Lett.82 (1999) 4384 [gr-qc/9901021] [INSPIRE]. · Zbl 0949.83012
[43] L.E. Kidder, M.A. Scheel and S.A. Teukolsky, Extending the lifetime of 3-D black hole computations with a new hyperbolic system of evolution equations, Phys. Rev.D 64 (2001) 064017 [gr-qc/0105031] [INSPIRE].
[44] A. Rendall, Partial differential equations in general relativity, Oxford Graduate Texts in Mathematics, Oxford University Press (2008).
[45] H. Friedrich and A.D. Rendall, The Cauchy problem for the Einstein equations, Lect. Notes Phys.540 (2000) 127 [gr-qc/0002074] [INSPIRE]. · Zbl 1006.83003
[46] H.-a. Shinkai and G. Yoneda, Reformulating the Einstein equations for stable numerical simulations, gr-qc/0209111 [INSPIRE].
[47] T.W. Baumgarte and S.L. Shapiro, On the numerical integration of Einstein’s field equations, Phys. Rev.D 59 (1999) 024007 [gr-qc/9810065] [INSPIRE]. · Zbl 1250.83004
[48] Loffler, F.; etal., The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics, Class. Quant. Grav., 29, 115001 (2012) · Zbl 1247.83003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.