×

zbMATH — the first resource for mathematics

Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. (English) Zbl 07147427
Summary: The space-time (ST) computational method “ST-SI-TC-IGA” has recently enabled computational analysis of tire aerodynamics with actual tire geometry, road contact and tire deformation. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). These ST methods played their parts in overcoming the computational challenges, including (i) the complexity of an actual tire geometry with longitudinal and transverse grooves, (ii) the spin of the tire, (iii) maintaining accurate representation of the boundary layers near the tire while being able to deal with the flow-domain topology change created by the road contact, and (iv) the turbulent nature of the flow. The combination of the ST-VMS, ST-SI and the ST-IGA has also recently enabled solution of fluid film problems with a computational cost comparable to that of the Reynolds-equation model for the comparable solution quality. This was accomplished with the computational flexibility to go beyond the limitations of the Reynolds-equation model. Here we include and address the computational challenges associated with the road roughness and the fluid film between the tire and the road. The new methods we add to accomplish that include a remedy for the trapped fluid, a method for reducing the number of control points as a space occupied by the fluid shrinks down to a narrow gap, and a method for representing the road roughness. We present computations for a 2D test problem with a straight channel, a simple 2D model of the tire, and a 3D model with actual tire geometry and road roughness. The computations show the effectiveness of our integrated set of ST methods targeting tire aerodynamics.

MSC:
74 Mechanics of deformable solids
Software:
SUPG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput Mech, 63, 1165-1185 (2019) · Zbl 07053716
[2] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput Fluids, 158, 176-188 (2017) · Zbl 1390.76944
[3] Takizawa, K.; Tezduyar, TE, Multiscale space-time fluid-structure interaction techniques, Comput Mech, 48, 247-267 (2011) · Zbl 1398.76128
[4] Takizawa, K.; Tezduyar, TE, Space-time fluid-structure interaction methods, Math Models Methods Appl Sci, 22, 1230001 (2012) · Zbl 1248.76118
[5] Takizawa, K.; Tezduyar, TE; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139
[6] Takizawa, K.; Tezduyar, TE; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345
[7] Takizawa, K.; Tezduyar, TE; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput Mech, 57, 965-977 (2016) · Zbl 1382.74044
[8] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput Mech, 54, 955-971 (2014) · Zbl 1311.74045
[9] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083
[10] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, TE, Space-time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, 010903 (2012) · Zbl 1286.76179
[11] Takizawa, K.; Tezduyar, TE; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[12] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time Isogeometric flow analysis with built-in Reynolds-equation limit, Math Models Methods Appl Sci, 29, 871-904 (2019)
[13] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069
[14] Tezduyar, TE, Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605
[15] Tezduyar, TE; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044
[16] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041
[17] Hughes, TJR, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401 (1995) · Zbl 0866.76044
[18] Hughes, TJR; Oberai, AA; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237
[19] Bazilevs, Y.; Calo, VM; Cottrell, JA; Hughes, TJR; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352
[20] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037
[21] Bazilevs, Y.; Calo, VM; Hughes, TJR; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015
[22] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch Comput Methods Eng, 19, 171-225 (2012) · Zbl 1354.92023
[23] Bazilevs, Y.; Hsu, M-C; Takizawa, K.; Tezduyar, TE, ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math Models Methods Appl Sci, 22, 1230002 (2012) · Zbl 1404.76187
[24] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational Fluid-Structure Interaction: Methods and Applications. Wiley, London ISBN 978-0470978771 · Zbl 1286.74001
[25] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Challenges and directions in computational fluid-structure interaction, Math Models Methods Appl Sci, 23, 215-221 (2013) · Zbl 1261.76025
[26] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math Models Methods Appl Sci, 25, 2217-2226 (2015) · Zbl 1329.76007
[27] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational analysis methods for complex unsteady flow problems, Math Models Methods Appl Sci, 29, 825-838 (2019)
[28] Kalro, V.; Tezduyar, TE, A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332 (2000) · Zbl 0993.76044
[29] Bazilevs, Y.; Hughes, TJR, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[30] Bazilevs, Y.; Michler, C.; Calo, VM; Hughes, TJR, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput Methods Appl Mech Eng, 199, 780-790 (2010) · Zbl 1406.76023
[31] Hsu, M-C; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions, Comput Mech, 50, 499-511 (2012)
[32] Bazilevs, Y.; Hughes, TJR, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150 (2008) · Zbl 1171.76043
[33] Hsu, M-C; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput Mech, 50, 821-833 (2012) · Zbl 1311.74038
[34] Moghadam, ME; Bazilevs, Y.; Hsia, T-Y; Vignon-Clementel, IE; Marsden, AL, A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput Mech, 48, 277-291 (2011) · Zbl 1398.76102
[35] Bazilevs, Y.; Hsu, M-C; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, TE, 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics, Int J Numer Methods Fluids, 65, 207-235 (2011) · Zbl 1428.76086
[36] Bazilevs, Y.; Hsu, M-C; Kiendl, J.; Wüchner, R.; Bletzinger, K-U, 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087
[37] Hsu, M-C; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput Fluids, 49, 93-100 (2011) · Zbl 1271.76276
[38] Bazilevs, Y.; Hsu, M-C; Scott, MA, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput Methods Appl Mech Eng, 249-252, 28-41 (2012) · Zbl 1348.74094
[39] Hsu, M-C; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment, Wind Energy, 17, 461-481 (2014)
[40] Korobenko, A.; Hsu, M-C; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math Models Methods Appl Sci, 23, 249-272 (2013) · Zbl 1261.74011
[41] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Kostov, N.; McIntyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch Comput Methods Eng, 21, 359-398 (2014) · Zbl 1348.74095
[42] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int J Numer Methods Eng, 102, 766-783 (2015) · Zbl 1352.76033
[43] Korobenko, A.; Yan, J.; Gohari, SMI; Sarkar, S.; Bazilevs, Y., FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput Fluids, 158, 167-175 (2017) · Zbl 1390.86036
[44] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE (ed.), Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, 253-336 (2018), Berlin
[45] Korobenko, Artem; Bazilevs, Yuri; Takizawa, Kenji; Tezduyar, Tayfun E., Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis, Archives of Computational Methods in Engineering, 26, 1059-1099 (2018)
[46] Korobenko, A.; Hsu, M-C; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J Appl Mech, 81, 021011 (2013)
[47] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, JO, FSI modeling of vertical-axis wind turbines, J Appl Mech, 81, 081006 (2014)
[48] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376
[49] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, SMI; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math Models Methods Appl Sci, 25, 2349-2375 (2015) · Zbl 1329.76050
[50] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J Appl Mech, 83, 061010 (2016)
[51] Bazilevs, Y.; Calo, VM; Zhang, Y.; Hughes, TJR, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322 (2006) · Zbl 1161.74020
[52] Bazilevs, Y.; Gohean, JR; Hughes, TJR; Moser, RD; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550 (2009) · Zbl 1229.74096
[53] Bazilevs, Y.; Hsu, M-C; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: methods and application to a total cavopulmonary connection, Comput Mech, 45, 77-89 (2009) · Zbl 1398.92056
[54] Bazilevs, Y.; Hsu, M-C; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput Mech, 46, 3-16 (2010) · Zbl 1301.92014
[55] Bazilevs, Y.; Hsu, M-C; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J., Computational fluid-structure interaction: methods and application to cerebral aneurysms, Biomech Model Mechanobiol, 9, 481-498 (2010)
[56] Hsu, M-C; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem Anal Des, 47, 593-599 (2011)
[57] Long, CC; Marsden, AL; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput Mech, 52, 971-981 (2013) · Zbl 1388.74039
[58] Long, CC; Esmaily-Moghadam, M.; Marsden, AL; Bazilevs, Y., Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput Mech, 54, 911-919 (2014) · Zbl 1311.74041
[59] Long, CC; Marsden, AL; Bazilevs, Y., Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput Mech, 54, 921-932 (2014) · Zbl 1314.74056
[60] Hsu, M-C; Kamensky, D.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039
[61] Hsu, M-C; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, MCH; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, MS, Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput Mech, 55, 1211-1225 (2015) · Zbl 1325.74048
[62] Kamensky, D.; Hsu, M-C; Schillinger, D.; Evans, JA; Aggarwal, A.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273
[63] Akkerman, I.; Bazilevs, Y.; Benson, DJ; Farthing, MW; Kees, CE, Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, 010905 (2012)
[64] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS, Comput Mech, 50, 719-727 (2012)
[65] Wang, C.; Wu, MCH; Xu, F.; Hsu, M-C; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis, Comput Fluids, 142, 3-14 (2017) · Zbl 1390.76013
[66] Wu, MCH; Kamensky, D.; Wang, C.; Herrema, AJ; Xu, F.; Pigazzini, MS; Verma, A.; Marsden, AL; Bazilevs, Y.; Hsu, M-C, Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear, Comput Methods Appl Mech Eng, 316, 668-693 (2017)
[67] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput Fluids, 158, 157-166 (2017) · Zbl 1390.86027
[68] Castorrini, A.; Corsini, A.; Rispoli, F.; Takizawa, K.; Tezduyar, TE, A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery, Math Models Methods Appl Sci, 29, 967-994 (2019)
[69] Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., Experimental and numerical FSI study of compliant hydrofoils, Comput Mech, 55, 1079-1090 (2015) · Zbl 1390.76375
[70] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[71] Helgedagsrud, Tore A.; Bazilevs, Yuri; Mathisen, Kjell M.; Øiseth, Ole A., Computational and experimental investigation of free vibration and flutter of bridge decks, Computational Mechanics, 63, 121-136 (2018) · Zbl 07024101
[72] Helgedagsrud, Tore A.; Bazilevs, Yuri; Korobenko, Artem; Mathisen, Kjell M.; Øiseth, Ole A., Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Computers & Fluids, 179, 820-832 (2019) · Zbl 1411.74029
[73] Helgedagsrud TA, Akkerman I, Bazilevs Y, Mathisen KM, Oiseth OA, Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics. ASCE J Eng Mech, Accepted for publication
[74] Kamensky, D.; Evans, JA; Hsu, M-C; Bazilevs, Y., Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling, Comput Math Appl, 74, 2068-2088 (2017) · Zbl 1397.65274
[75] Yu, Y.; Kamensky, D.; Hsu, M-C; Lu, XY; Bazilevs, Y.; Hughes, TJR, Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction, Math Models Methods Appl Sci, 28, 2457-2509 (2018) · Zbl 1411.74059
[76] Tezduyar, TE; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int J Numer Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148
[77] Yan, J.; Korobenko, A.; Tejada-Martinez, AE; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput Fluids, 158, 150-156 (2017) · Zbl 1390.76107
[78] Opstal, TM; Yan, J.; Coley, C.; Evans, JA; Kvamsdal, T.; Bazilevs, Y., Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows, Comput Methods Appl Mech Eng, 316, 859-879 (2017)
[79] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M-C; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput Fluids, 158, 201-220 (2017) · Zbl 1390.76805
[80] Tezduyar, TE; Takizawa, K., Space-time computations in practical engineering applications: a summary of the 25-year history, Comput Mech, 63, 747-753 (2019) · Zbl 07053692
[81] Takizawa, K.; Tezduyar, TE, Computational methods for parachute fluid-structure interactions, Arch Comput Methods Eng, 19, 125-169 (2012) · Zbl 1354.76113
[82] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, TE, Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput Mech, 50, 835-854 (2012)
[83] Takizawa, K.; Tezduyar, TE; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097
[84] Takizawa, K.; Tezduyar, TE; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput Mech, 55, 1059-1069 (2015)
[85] Takizawa, K.; Montes, D.; Fritze, M.; McIntyre, S.; Boben, J.; Tezduyar, TE, Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math Models Methods Appl Sci, 23, 307-338 (2013) · Zbl 1261.76013
[86] Takizawa, K.; Tezduyar, TE; Boswell, C.; Kolesar, R.; Montel, K., FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput Mech, 54, 1203-1220 (2014)
[87] Takizawa, K.; Tezduyar, TE; Kolesar, R.; Boswell, C.; Kanai, T.; Montel, K., Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput Mech, 54, 1461-1476 (2014) · Zbl 1309.74025
[88] Takizawa, K.; Tezduyar, TE; Kolesar, R., FSI modeling of the Orion spacecraft drogue parachutes, Comput Mech, 55, 1167-1179 (2015) · Zbl 1325.74169
[89] Takizawa, K.; Henicke, B.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 333-344 (2011) · Zbl 1398.76127
[90] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657 (2011) · Zbl 1334.74032
[91] Takizawa, K.; Tezduyar, TE; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129
[92] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C; Øiseth, O.; Mathisen, KM; Kostov, N.; McIntyre, S., Engineering analysis and design with ALE-VMS and space-time methods, Arch Comput Methods Eng, 21, 481-508 (2014) · Zbl 1348.74104
[93] Takizawa, K., Computational engineering analysis with the new-generation space-time methods, Comput Mech, 54, 193-211 (2014)
[94] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, TE, Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput Mech, 50, 743-760 (2012) · Zbl 1286.76179
[95] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, TE, Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput Fluids, 85, 125-134 (2013) · Zbl 1290.76170
[96] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, TE, Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput Mech, 50, 761-778 (2012) · Zbl 1286.76180
[97] Takizawa, K.; Tezduyar, TE; Kostov, N., Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput Mech, 54, 213-233 (2014)
[98] Takizawa, K.; Tezduyar, TE; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput Mech, 55, 1131-1141 (2015)
[99] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Long, CC; Marsden, AL; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math Models Methods Appl Sci, 24, 2437-2486 (2014) · Zbl 1296.76113
[100] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput Mech, 50, 675-686 (2012) · Zbl 1311.76157
[101] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput Mech, 51, 1061-1073 (2013) · Zbl 1366.76106
[102] Suito, H.; Takizawa, K.; Huynh, VQH; Sze, D.; Ueda, T., FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput Mech, 54, 1035-1045 (2014) · Zbl 1311.74044
[103] Suito, H.; Takizawa, K.; Huynh, VQH; Sze, D.; Ueda, T.; Tezduyar, TE; Bazilevs, Y. (ed.); Takizawa, K. (ed.), A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta, 379-386 (2016), Berlin · Zbl 1356.76471
[104] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K.; Yoshida, A.; Komiya, K.; Inoue, G.; Tezduyar, TE (ed.), Aorta flow analysis and heart valve flow and structure analysis, 29-89 (2018), Berlin
[105] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Yoshida, A., Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput Fluids, 179, 790-798 (2019) · Zbl 1411.76184
[106] Takizawa, K.; Tezduyar, K.; Bazilevs, Y. (ed.); Takizawa, K. (ed.), New directions in space-time computational methods, 159-178 (2016), Berlin · Zbl 1356.76291
[107] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T.; Wriggers, P. (ed.); Lenarz, T. (ed.), Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA), 77-99 (2018), Berlin
[108] Takizawa, K.; Montes, D.; McIntyre, S.; Tezduyar, TE, Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math Models Methods Appl Sci, 23, 223-248 (2013) · Zbl 1261.76037
[109] Takizawa, K.; Tezduyar, TE; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput Fluids, 142, 109-117 (2017) · Zbl 1390.76011
[110] Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol 240, p 062014. https://doi.org/10.1088/1755-1315/240/6/062014
[111] Kanai, T.; Takizawa, K.; Tezduyar, TE; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math Models Methods Appl Sci, 29, 839-870 (2019)
[112] Otoguro, Y.; Takizawa, K.; Tezduyar, TE, Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput Fluids, 158, 189-200 (2017) · Zbl 1390.76345
[113] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE (ed.), A general-purpose NURBS mesh generation method for complex geometries, 399-434 (2018), Berlin
[114] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Mei, S., Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis, Comput Fluids, 179, 764-776 (2019) · Zbl 1411.76070
[115] Takizawa, K.; Tezduyar, TE; Asada, S.; Kuraishi, T., Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput Fluids, 141, 124-134 (2016) · Zbl 1390.76358
[116] Kuraishi, T.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE (ed.), Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, 337-376 (2018), Berlin
[117] Takizawa, K.; Tezduyar, TE; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 141, 191-200 (2016) · Zbl 1390.76359
[118] Takizawa, K.; Tezduyar, TE; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math Models Methods Appl Sci, 27, 771-806 (2017) · Zbl 1361.76017
[119] Kanai, T.; Takizawa, K.; Tezduyar, TE; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput Mech, 63, 301-321 (2019) · Zbl 07037442
[120] Tezduyar, TE; Ganjoo, DK, Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems, Comput Methods Appl Mech Eng, 59, 49-71 (1986) · Zbl 0604.76077
[121] Beau, GJ; Ray, SE; Aliabadi, SK; Tezduyar, TE, SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput Methods Appl Mech Eng, 104, 397-422 (1993) · Zbl 0772.76037
[122] Tezduyar, TE; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput Methods Appl Mech Eng, 195, 1621-1632 (2006) · Zbl 1122.76061
[123] Corsini, A.; Menichini, C.; Rispoli, F.; Santoriello, A.; Tezduyar, TE, A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J Appl Mech, 76, 021211 (2009)
[124] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, TE, Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ \(\beta\) shock-capturing, J Appl Mech, 76, 021209 (2009)
[125] Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, TE, A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput Mech, 46, 159-167 (2010) · Zbl 1301.76045
[126] Hsu, M-C; Bazilevs, Y.; Calo, VM; Tezduyar, TE; Hughes, TJR, Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840 (2010) · Zbl 1406.76028
[127] Corsini, A.; Rispoli, F.; Tezduyar, TE, Stabilized finite element computation of NOx emission in aero-engine combustors, Int J Numer Methods Fluids, 65, 254-270 (2011) · Zbl 1426.76240
[128] Corsini, A.; Rispoli, F.; Tezduyar, TE, Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J Appl Mech, 79, 010910 (2012)
[129] Corsini, A.; Rispoli, F.; Sheard, AG; Tezduyar, TE, Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput Mech, 50, 695-705 (2012) · Zbl 1311.76121
[130] Kler, PA; Dalcin, LD; Paz, RR; Tezduyar, TE, SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput Mech, 51, 171-185 (2013) · Zbl 1312.76062
[131] Corsini, A.; Rispoli, F.; Sheard, AG; Takizawa, K.; Tezduyar, TE; Venturini, P., A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput Mech, 54, 1191-1202 (2014) · Zbl 1311.76030
[132] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, TE, Particle tracking and particle-shock interaction in compressible-flow computations with the V-SGS stabilization and YZ \(\beta\) shock-capturing, Comput Mech, 55, 1201-1209 (2015) · Zbl 1325.76121
[133] Cardillo, L.; Corsini, A.; Delibra, G.; Rispoli, F.; Tezduyar, TE, Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and discontinuity-capturing directional dissipation, Comput Fluids, 141, 184-190 (2016) · Zbl 1390.76295
[134] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, TE, Computational analysis of wind-turbine blade rain erosion, Comput Fluids, 141, 175-183 (2016) · Zbl 1390.76298
[135] Takizawa, K.; Tezduyar, TE; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput Mech, 62, 1169-1186 (2018) · Zbl 06981055
[136] Castorrini, Alessio; Corsini, Alessandro; Rispoli, Franco; Venturini, Paolo; Takizawa, Kenji; Tezduyar, Tayfun E., Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion, Computational Mechanics, 64, 1133-1153 (2019) · Zbl 07119155
[137] Tezduyar, TE; Aliabadi, SK; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput Methods Appl Mech Eng, 119, 157-177 (1994) · Zbl 0848.76040
[138] Takizawa, K.; Tezduyar, TE, Space-time computation techniques with continuous representation in time (ST-C), Comput Mech, 53, 91-99 (2014)
[139] Takizawa, K.; Tezduyar, TE; Sasaki, T.; Wriggers, P. (ed.); Lenarz, T. (ed.), Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization, 101-122 (2018), Berlin
[140] Takizawa, K.; Tezduyar, TE; Sasaki, T., Aorta modeling with the element-based zero-stress state and isogeometric discretization, Comput Mech, 59, 265-280 (2017)
[141] Sasaki, T.; Takizawa, K.; Tezduyar, TE, Aorta zero-stress state modeling with T-spline discretization, Comput Mech, 63, 1315-1331 (2019) · Zbl 07053724
[142] Sasaki, Takafumi; Takizawa, Kenji; Tezduyar, Tayfun E., Medical-image-based aorta modeling with zero-stress-state estimation, Computational Mechanics, 64, 249-271 (2019) · Zbl 07073977
[143] Takizawa, K.; Tezduyar, TE; Sasaki, T., Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping, Comput Mech, 63, 681-700 (2019) · Zbl 07053688
[144] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 856-869 (1986) · Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.