×

zbMATH — the first resource for mathematics

Adaptive mesh refinement for steady flows in Nek5000. (English) Zbl 07149121
Summary: Adaptive mesh refinement is performed in the framework of the spectral element method augmented by approaches to error estimation and control. The \(h\)-refinement technique is used for adapting the mesh, where selected grid elements are split by a quadtree (2D) or octree (3D) structure. Continuity between parent-child elements is enforced by high-order interpolation of the solution across the common faces. Parallel mesh partitioning and grid management respectively, are taken care of by the external libraries ParMETIS and p4est. Two methods are considered for estimating and controlling the error of the solution. The first error estimate is local and based on the spectral properties of the solution on each element. This method gives a local measure of the \(L^2\)-norm of the solution over the entire computational domain. The second error estimate uses the dual-weighted residuals method – it is based on and takes into account both the local properties of the solution and the global dependence of the error in the solution via an adjoint problem. The objective of this second approach is to optimize the computation of a given functional of physical interest. The simulations are performed by using the code Nek5000 and three steady-state test cases are studied: a two-dimensional lid-driven cavity at \(\mathrm{Re} = 7500\), a two-dimensional flow past a cylinder at \(\mathrm{Re} = 40\), and a three-dimensional lid-driven cavity at \(\mathrm{Re} = 2000\) with a moving lid tilted by an angle of 30°. The efficiency of both error estimators is compared in terms of refinement patterns and accuracy on the functional of interest. In the case of the adjoint error estimators, the trend on the error of the functional is shown to be correctly represented up to a multiplicative constant.
MSC:
76 Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Moin, P.; Mahesh, K., DIRECT NUMERICAL SIMULATION: A tool in turbulence research, Annu Rev Fluid Mech, 30, 1, 539-578 (1998) · Zbl 1398.76073
[2] Mandli, K. T.; Ahmadia, A. J.; Berger, M.; Calhoun, D.; George, D. L.; Hadjimichael, Y., Clawpack: building an open source ecosystem for solving hyperbolic PDEs, PeerJ Comput Sci, 2, e68 (2016)
[3] Adams, M.; Colella, P.; Graves, D. T.; Johnson, J.; Keen, N.; Ligocki, T. J., Chombo software package for AMR applications – design document, Tech. Rep. LBNL-6616E (2013), Lawrence Berkeley National Laboratory
[4] Anderson, R.; Arrighi, W.; Elliott, N.; Gunney, B.; Hornun, R., SAMRAI concepts and software design, Tech. Rep. LLNL-SM-617092-DRAFT (2013), Lawrence Berkeley National Laboratory
[5] Adaptive Meshing, Part 2 (1997) · Zbl 0914.76047
[6] McRae, D., r-refinement grid adaptation algorithms and issues, Comput Methods Appl Mech Eng, 189, 1161-1182 (2000) · Zbl 0995.76078
[7] Maday, Y.; Mavriplis, C.; Patera, A., Nonconforming mortar element methods: application to spectral discretizations, Proceedings of the 2nd international conference on domain decomposition methods, 392-418 (1988)
[8] Kruse, G. W., Parallel nonconforming spectral element solution of the incompressible Navier-Stokes equations in three dimensions (1997), Brown University, Ph.D. thesis
[9] Ekelschot, D.; Moxey, D.; Sherwin, S.; Peir, J., A p-adaptation method for compressible flow problems using a goal-based error indicator, Comput Struct, 181, C, 55-69 (2017)
[10] Burstedde, C.; Wilcox, L. A.C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J Sci Comput, 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[11] accepted · Zbl 1410.65363
[12] Babuška, I.; Rheinboldt, W., Error estimates for adaptive finite element computations, SIAM J Numer Anal, 15, 4, 736-754 (1978) · Zbl 0398.65069
[13] Ainsworth, M.; Oden, J., A posteriori error estimation in finite element analysis, Comput Methods Appl Mech Eng, 142, 1, 1-88 (1997) · Zbl 0895.76040
[14] Grätsch, T.; Bathe, K.-J., A posteriori error estimation techniques in practical finite element analysis, Comput Struct, 83, 4, 235-265 (2005)
[15] Mavriplis, C., A posteriori error estimators for adaptive spectral element techniques, (Wesseling, P., Notes on numerical fluid mechanics (1990)), 333-342
[16] Jacobs, C. T.; Zauner, M.; De Tullio, N.; Jammy, S. P.; Lusher, D. J.; Sandham, N. D., An error indicator for finite difference methods using spectral techniques with application to aerofoil simulation, Comput Fluids, 168, 67-72 (2018) · Zbl 1390.76576
[17] Pierce, N. A.; Giles, M. B., Adjoint recovery of superconvergent functionals from PDE approximations, SIAM Rev, 42, 2, 247-264 (2000) · Zbl 0948.65119
[18] Johnson, C.; Hansbo, P., Adaptive finite element methods in computational mechanics, Comput Methods Appl Mech Eng, 101, 1, 143-181 (1992) · Zbl 0778.73071
[19] Bangerth, W.; Rannacher, R., Adaptive finite element methods for differential equations (2002), Birkhäuser: Birkhäuser Basel · Zbl 0948.65098
[20] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J Comput Phys, 53, 3, 484-512 (1984) · Zbl 0536.65071
[21] Berger, M.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J Comput Phys, 82, 1, 64-84 (1989) · Zbl 0665.76070
[22] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J Sci Comput, 15, 1, 127-138 (1994) · Zbl 0793.65072
[23] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q., FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys J Suppl Ser, 131, 1, 273 (2000)
[24] Cunningham, A. J.; Frank, A.; Varnière, P.; Mitran, S.; Jones, T. W., Simulating magnetohydrodynamical flow with constrained transport and adaptive mesh refinement: algorithms and tests of the AstroBEAR code, Astrophys J Suppl Ser, 182, 2, 519 (2009)
[25] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E., The Cactus framework and toolkit: design and applications, (Palma, J. M.L. M.; Sousa, A. A.; Dongarra, J.; Hernández, V., High performance computing for computational science — VECPAR 2002 (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 197-227 · Zbl 1027.65524
[26] arXiv:1307.2265.
[27] Ch. 6 · Zbl 1298.74240
[28] Ch. 2 · Zbl 1298.74238
[29] Ch. 4 · Zbl 1298.74237
[30] Berrone, S.; Marro, M., Space-time adaptive simulations for unsteady Navier-Stokes problems, Comput Fluids, 38, 1132-1144 (2009) · Zbl 1242.76111
[31] Hoffman, J.; Johnson, C., Stability of the dual Navier-Stokes equations and efficient computation of mean output in turbulent flow using adaptive DNS/LES, Comput Methods Appl Mech Eng, 195, 13-16, 1709-1721 (2006) · Zbl 1115.76037
[32] ParCFD 2013 · Zbl 1390.76128
[33] Dubey A, Almgren AS, Bell JB, Berzins M., Brandt SR, Bryan G, et al. A survey of high level frameworks in block-structured adaptive mesh refinement packages. 2016; CoRR arXiv:1610.08833.
[34] Fischer PF, Lottes JW, Kerkemeier SG., Nek5000 Web page. 2008.
[35] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J Comput Phys, 54, 3, 468-488 (1984) · Zbl 0535.76035
[36] Moxey D, Cantwell C, Vyzamal M, Offermans N, Jansson N, Peplinski A, et al. D1.2 - initial proof-of-concept formulation of ExaFLOW algorithms. Deliverables 1.2, ExaFLOW project; 2017.
[37] Peplinski, A.; Fischer, P. F.; Schlatter, P., Parallel performance of h-type adaptive mesh refinement for Nek5000, Proceedings of the exascale applications and software conference 2016, Stockholm, Sweden, April 26-29, 2016 (2016), 4:1-4:9
[38] Karypis G, Kumar V. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. 2009.
[39] Johnson N, Bareford M, White M, Jansson N, Peplinski A, Gong J, et al. D2.2 - initial report on the ExaFLOW algorithms, energy efficiency and IO strategiesDeliverables 2.2, ExaFLOW project; 2017.
[40] Fischer, P. F., An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J Comput Phys, 133, 1, 84-101 (1997) · Zbl 0904.76057
[41] Accepted
[42] Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F., Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination, J Comput Phys, 344 (2017)
[43] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order methods for incompressible fluid flow (2002), Cambridge University Press · Zbl 1007.76001
[44] Hartmann, R., Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J Numer Anal, 45, 6, 2671-2696 (2007) · Zbl 1189.76341
[45] QC 20150304 · Zbl 1408.76225
[46] Richter, T.; Wick, T., Variational localizations of the dual weighted residual estimator, J Comput Appl Math, 279, 192-208 (2015) · Zbl 1306.65283
[47] Bruneau, C.-H.; Saad, M., New bench-mark results for the 2D lid-driven cavity problem, Computational fluid dynamics 2002: proceedings of the second international conference on computational fluid dynamics, ICCFD, Sydney, Australia, 15-19 July 2002, 317-322 (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 1157.76370
[48] Boppana, V. B.L.; Gajjar, J. S.B., Global flow instability in a lid-driven cavity, Int J Numer Methods Fluids, 62, 8, 827-853 (2010) · Zbl 1423.76135
[49] Brynjell-Rahkola, M.; Tuckerman, L. S.; Schlatter, P.; Henningson, D. S., Computing optimal forcing using Laplace preconditioning, Commun Comput Phys, 22, 5, 1508-1532 (2017)
[50] Williamson, C. H.K., Vortex dynamics in the cylinder wake, Annu Rev Fluid Mech, 28, 1, 477-539 (1996)
[51] QC 20150604 · Zbl 1426.76511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.