×

Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows. (English) Zbl 1433.76149

Summary: The paper addresses a novel interface-capturing approach for two-phase flows governed by the five-equation model. In this model, two fluids separated with an interface are treated as a homogenous fluid with a characteristic function (volume fraction) determining the location of the fluids and the interface. To suppress the numerical diffusion of the interface, we reconstruct the discontinuity of the volume fraction in each composite (mixed) cell that contains two materials. This sub-cell reconstruction gives rise to the Composite Riemann Problem (CRP) whose solution is used to calculate the numerical flux through cell faces which bound mixed cells. The HLLC method is incorporated to approximate the solution of the CRP. The CRP method is shown to reduce the interface numerical diffusion without introducing spurious oscillations. Its performance and robustness is examined by a variety of 1D and 2D numerical tests, such as the shock-bubble interaction problem, the triple-point problem, and the Richtmyer-Meshkov instability problem.

MSC:

76N20 Boundary-layer theory for compressible fluids and gas dynamics
76T10 Liquid-gas two-phase flows, bubbly flows
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Software:

ReALE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577-616 (2002) · Zbl 1169.76407
[2] Ranjan, D.; Oakley, J.; Bonazza, R., Shock-bubble interactions, Annu. Rev. Fluid Mech., 43, 117-140 (2011) · Zbl 1299.76125
[3] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129 (1996) · Zbl 0877.76046
[4] Klaseboer, E.; Turangan, C.; Fong, S. W.; Liu, T. G.; Hung, K. C.; Khoo, B. C., Simulations of pressure pulse-bubble interaction using boundary element method, Comput. Methods Appl. Mech. Eng., 195, 4287-4302 (2006) · Zbl 1120.76048
[5] Fechter, S.; Munz, C. D.; Rohde, C.; Zeiler, C., A sharp interface method for compressible liquid – vapor flow with phase transition and surface tension, J. Comput. Phys., 336, 347-374 (2017) · Zbl 1375.76194
[6] Klaseboer, E.; Hung, K. C.; Wang, C.; Wang, C. W.; Khoo, B. C.; Boyce, P.; Debono, S.; Charlier, H., Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure, J. Fluid Mech, 537, 387-413 (2005) · Zbl 1138.76303
[7] Sprague, M. A.; Geers, T. L., A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion, Comput. Methods Appl. Mech. Eng., 195, 2149-2167 (2006) · Zbl 1122.76067
[8] Luo, H.; Baum, J. D.; Löhner, R., On the computation of multi-material flows using ALE formulation, J. Comput. Phys., 194, 304-328 (2004) · Zbl 1136.76401
[9] Johnsen, T.; Colonius, E., Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124, 4, 2011-2020 (2008)
[10] Kokh, S.; Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 2773-2809 (2010) · Zbl 1302.76129
[11] Thomas, A. G.R.; Tzoufras, M.; Robinson, A. P.L.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Bell, A. R., A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma, J. Comput. Phys., 231, 3 (2012) · Zbl 1385.76015
[12] Peery, J. S.; Carroll, D. E., Multi-Material ALE methods in unstructured grids, Comput. Methods Appl. Mech. Eng., 187, 591-619 (2000) · Zbl 0980.74068
[13] Galera, S.; Maire, P. H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 5755-5787 (2010) · Zbl 1346.76105
[14] Breil, J.; Harribey, T.; Maire, P. H.; Shashkov, M., A multi-material ReALE method with MOF interface reconstruction, Comput. Fluids, 83, 115-125 (2013) · Zbl 1290.76094
[15] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAMJ. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[16] Smith, R. W., AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme, J. Comput. Phys., 150, 268-286 (1999) · Zbl 0936.76046
[17] Ball, G. J.; Howell, B. P.; Leighton, T. G.; Schofield, M. J., Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation, Shock Waves, 10, 265-276 (2000) · Zbl 0980.76090
[18] Glimm, J.; Li, X. L.; Liu, Y. J.; Xu, Z. L.; Zhao, N., Conservative front tracking with improved accuracy, SIAM J. Numer. Anal., 41, 1926-1947 (2003) · Zbl 1053.35093
[19] Cocchi, J. P.; Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. Comput. Phys., 137, 265-298 (1997) · Zbl 0934.76055
[20] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K. M.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 703-727 (1998) · Zbl 0912.65075
[21] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 5361-5384 (2008) · Zbl 1220.76048
[22] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi equations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[23] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100, 209-228 (1992) · Zbl 0758.76044
[24] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[25] Osher, S.; Fedkiw, R. P., Level Sets and Dynamic Implicit Surfaces (2002), Springer-Verlag: Springer-Verlag New York
[26] Nourgaliev, R. R.; Liou, M. S.; Theofanous, T. G., Numerical prediction of interfacial instabilities: sharp interface method (SIM), J. Comput. Phys., 227, 8, 3940-3970 (2008) · Zbl 1275.76164
[27] H. Kim, M.S. Liou, Adaptive Cartesian sharp interface method for three-dimensional multi-phase flows, 2009, AIAA Paper 2009-4153.; H. Kim, M.S. Liou, Adaptive Cartesian sharp interface method for three-dimensional multi-phase flows, 2009, AIAA Paper 2009-4153.
[28] Chang, C. H.; Deng, X.; Theofanous, T. G., Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242, 946-990 (2013) · Zbl 1299.76097
[29] Lin, J. Y.; Shen, Y.; Ding, H.; Liu, N. S.; Lu, X. Y., Simulation of compressible two-phase flows with topology change of fluid – fluid interface by a robust cut-cell method, J. Comput. Phys., 328, 140-159 (2017)
[30] Billaud, M.; Gallice, G.; Nkonga, B., A simple stabilized finite element method for solving two phase compressible – incompressible interface flows, Comput. Methods Appl. Mech. Eng., 200, 1272-1290 (2011) · Zbl 1225.76191
[31] Montazeria, H.; Zandavib, S. H.; Bazylaka, A., Sharp interface models for two-phase flows: Insights towards new approaches, Comput. Methods Appl. Mech. Eng., 322, 238-261 (2017) · Zbl 1439.76020
[32] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach, J. Comput. Phys., 125, 1, 150-160 (1996) · Zbl 0847.76060
[33] Shyue, K. M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 1, 208-242 (1998) · Zbl 0934.76062
[34] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[35] Shyue, K. M., A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys., 156, 43-88 (1999) · Zbl 0957.76039
[36] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 2, 425-467 (1999) · Zbl 0937.76053
[37] Pandare, A. K.; Luo, H., A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows, J. Comput. Phys., 371, 67-91 (2018) · Zbl 1415.76477
[38] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698 (2005) · Zbl 1061.76083
[39] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, J. Comput. Phys., 209, 139-178 (2005) · Zbl 1329.76301
[40] Johnsen, E.; Ham, F., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J.Comput. Phys., 231, 5705-5717 (2012) · Zbl 1522.76051
[41] Coralic, V.; Colonius, T., Finite-volume WENO scheme for viscous compressible multicomponent flows, J. Comput. Phys., 274, 95-121 (2014) · Zbl 1351.76100
[42] Menshov, I.; Zakharov, P., On the composite Riemann problem for multi-material fluid flows, Int. J. Numer. Methods Fluids, 76, 109-127 (2014) · Zbl 1455.65158
[43] He, Z.; Tian, B.; Zhang, Y.; Gao, F., Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows, J. Comput. Phys., 333, 247-268 (2017) · Zbl 1375.76207
[44] Dumbser, M., A simple two-phase method for the simulation of complex free surface flows, Comput. Methods Appl. Mech. Eng., 200, 1204-1219 (2011) · Zbl 1225.76210
[45] Dumbser, M., A diffuse interface method for complex three-dimensional free surface flows, Comput. Methods Appl. Mech. Eng., 257, 47-64 (2013) · Zbl 1286.76099
[46] Harten, A., The artificial compression method for computation of shocks and contact discontinuities, I: single conservation laws, Commun. Pure Appl. Math., 30, 611-638 (1977) · Zbl 0343.76023
[47] Harten, A., The artificial compressionmethod for computation of shocks and contact discontinuities, III: self-adjusting hybrid schemes, Math. Comput., 32, 363-389 (1978) · Zbl 0409.76057
[48] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 225-246 (2005) · Zbl 1154.76368
[49] Olsson, E.; Kreiss, G.; Zahedi, S., A conservative level set method for two phase flow, II, J. Comput. Phys., 225, 785-807 (2007) · Zbl 1256.76052
[50] Barlow, A.; Klima, M.; Shashkov, M., Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics, J. Comput. Phys., 371, 914-944 (2018) · Zbl 1415.76445
[51] Shukla, R. K., Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276, 508-540 (2014) · Zbl 1349.65110
[52] Després, B.; Lagoutière, F., Contact discontinuity capturing schemes for linear advection, compressible gas dynamics, J. Sci. Comput., 16, 479-524 (2001) · Zbl 0999.76091
[53] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732 (2006) · Zbl 1189.76351
[54] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion method for interface steepening in two-phase incompressible flow, J. Comput. Phys., 230, 5155-5177 (2011) · Zbl 1416.76334
[55] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231, 4304-4323 (2012) · Zbl 1426.76428
[56] Xiao, F.; Honma, Y.; Kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Mech. Fluids, 48, 1023-1040 (2005) · Zbl 1072.76046
[57] Xiao, F.; Ii, S.; Chen, C., Revisit to the THINC scheme: a simple algebraic VOF algorithm, J. Comput. Phys., 230, 7086-7092 (2011) · Zbl 1408.76547
[58] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys., 227, 8395-8416 (2008) · Zbl 1256.76051
[59] Owkes, M.; Desjardins, O., A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows, J. Comput. Phys., 249, 275-302 (2013) · Zbl 1427.76218
[60] Del Pino, S.; Labourasse, E.; Morel, G., An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction, J. Comput. Phys., 363, 268-301 (2018) · Zbl 1392.76036
[61] Shyue, K. M.; Xiao, F., An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys., 268, 326-354 (2014) · Zbl 1349.76388
[62] Bdzil, J. B.; Menikoff, R.; Son, S. F.; Kapila, A. K.; Stewart, D. S., Two-phase modeling of deflagration to detonation transition in granular materials: a critical examination of modeling issues, Phys. Fluids, 11, 378-402 (1999) · Zbl 1147.76317
[63] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[64] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0923.76004
[65] Godunov, S. K., A difference scheme for numerical computation of discontinuous solution of hydrodynamic equations, Math. SB, 47, 1959, 271-306 (1969), [in Russian]; translation, U.S. Joint Publ. Res. Service, JPRS 7226 · Zbl 0171.46204
[66] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295 (1991) · Zbl 0709.76102
[67] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[68] Saurel, R.; Pantano, C., Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech., 50, 105-130 (2018) · Zbl 1384.76054
[69] Tiwari, A.; Freunda, J. B.; Pantano, C., A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252, 290-309 (2013) · Zbl 1349.76395
[70] Bates, K. R.; Nikiforakis, N.; Holder, D., Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6, Phys. Fluids, 19, Article 036101 pp. (2007) · Zbl 1146.76322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.