To the definition of the global transformation in 2-dimensional linear spaces of continuous functions. (English) Zbl 0715.34012

Summary: We study the question relating to the equivalence of definitions of the global transformation in two 2-dimensional linear spaces of continuous functions. We apply the definitions of transformation introduced by O. Borůvka [Lineare Differentialtransformationen 2. Ordnung. Berlin (1967; Zbl 0153.112); Englisch translation: London 1971], F. Neumann [Differ. Equations 19, 571-580 (1983); translation from Differ. Uravn. 19, No.5, 799-808 (1983; Zbl 0524.34044)] and K. Stach [Arch. Math., Brno 3, 117-138 (1967; Zbl 0217.400)], in studying the spaces of solutions of the second-order linear differential equations in the Jacobian form, the spaces of solutions of the nth order homogeneous linear differential equations, the 2-dimensional linear spaces of continuous functions, respectively.


34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
34A30 Linear ordinary differential equations and systems
34G10 Linear differential equations in abstract spaces
Full Text: EuDML


[1] Borůvka O.: Linear Differential Transformations of the Second Order. The English University Press, London 1971. · Zbl 0218.34005
[2] Неуман Ф.: Теория глобальных свойств обыкновенных линейных дифференциальных уравнений н-го порядка. Дифференциальные уравнения 19 (1983), 799-808. · Zbl 1229.47001
[3] Stach K.: Die vollständigen Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen. Arch. Math. Brno, T3 (1967), 117-138. · Zbl 0217.40002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.