×

The one-dimensional Darcy’s law as the limit of a compressible Euler flow. (English) Zbl 0715.35065

The authors study the singular convergence of solutions to a damped compressible Euler flow in one space dimension, with a polytropic equation of state, when the inertial terms tend to zero in a suitable rescaling. More precisely, they consider for all \(\epsilon >0\) the system of equations \[ \rho^{\epsilon}_ t+(\rho^{\epsilon}u^{\epsilon})_ x=0;\quad \epsilon (\rho^{\epsilon}u^{\epsilon})_ t+(\epsilon \rho^{\epsilon}(u^{\epsilon})^ 2+p^{\epsilon})_ x=- ku^{\epsilon}, \]
\[ p^{\epsilon}=p(\rho^{\epsilon})=c(\rho^{\epsilon})^{\gamma};\quad \rho^{\epsilon}(x,0)=\rho_ 0(x)\geq 0,\quad u^{\epsilon}(x,0)=u_ 0(x), \] where \(k>0\), \(c>0\), \(\rho\) is the density, u the Eulerian velocity and \(\gamma\) is the adiabatic exponent, that is, \(\gamma =1+2/n\), n denoting the number of degrees of freedom of the molecules (n\(\geq 3).\)
They show that there exists limit functions \(\rho\) and u such that, as \(\epsilon\downarrow 0\), \(\rho^{\epsilon}\to \rho\) in \(L^ p_{loc}\), \(u^{\epsilon}\to u\) in \(L^ 2\) weak and \(\sqrt{\epsilon}u^{\epsilon}\to 0\) in \(L^ p_{loc}\), for all \(p\in (1,\infty)\). Moreover, \(\rho\) satisfies, in the sense of distributions, Darcy’s law so that \(\rho\) is a weak solution of a porous media equation.
Reviewer: A.D.Osborne

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B25 Singular perturbations in context of PDEs
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Aronson, D. G., The porous media equations, (Fasano, A.; Primicerio, M., Non Linear Diffusion Problems. Non Linear Diffusion Problems, Lecture Notes in Math, Vol. 1224 (1986), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0202.37901
[2] Aronson, D. G.; Vazquez, J. L., The porous media equation as a finite speed approximation to a Hamilton-Jacobi equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4, 203-230 (1987) · Zbl 0635.35047
[3] Bardos, C., Introduction aux Problemes Hyperboliques Nonlineaires, (da Veiga, H. Beirao, Fluid Dynamics. Fluid Dynamics, Lecture Notes in Math, Vol. 1047 (1984), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0549.35078
[4] Chueh, K. N.; Conley, C. C.; Smoller, J. A., Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J, 26, 372-411 (1977) · Zbl 0368.35040
[5] Chen, G., Convergence of Lax-Friedrichs scheme for isentropic gas dynamics, III, Acta Math. Sci, 6, 75-120 (1986) · Zbl 0643.76086
[6] Dafermos, C. M., Estimates for conservation laws with little viscosity, Siam J. Math. Anal, 18, 409-421 (1987) · Zbl 0655.35055
[7] Di Perna, R. J., Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys, 91, 1-30 (1985) · Zbl 0533.76071
[8] Di Perna, R. J., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal, 82, 27-70 (1983) · Zbl 0519.35054
[9] Di Perna, R. J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal, 88, 223-270 (1985) · Zbl 0616.35055
[10] Di Perna, R. J., Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc, 292, 383-419 (1985) · Zbl 0606.35052
[11] Di Perna, R. J.; Majda, A., Oscillation and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys, 108, 667-689 (1987) · Zbl 0626.35059
[12] Di Perna, R. J.; Majda, A., Concentrations in regularizations for 2−\(D\) incompressible flow, Comm. Pure Appl. Math, 60, 301-345 (1987) · Zbl 0850.76730
[13] Di Perna, R. J.; Majda, A., Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc, 1, 59-95 (1988) · Zbl 0707.76026
[14] Ding, X.; Chen, G.; Luo, P., Scheme for isentropic gas dynamics II, Acta Math. Sci, 5, 433-472 (1985) · Zbl 0643.76085
[16] Longwei, Lin, Existence of the global solutions for gas dynamics, Acta Sci. Natur. Univ. Jilin, 1, 96-106 (1978), [Chinese]
[17] Lions, J. L., Perturbations singulieres dans les problèmes aux limites et en controle optimale, (Lecture Notes in Math, Vol. 323 (1973), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0268.49001
[18] Majda, A., Compressible fluid flow and systems of conservation laws in several space variable, (Applied Math. Sciences Series, Vol. 53 (1984), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0537.76001
[19] Marcati, P., Approximate solutions to conservation laws via convective parabolic equations, Comm. Partial Differential Equations, 13, 321-344 (1988) · Zbl 0653.35057
[20] Marcati, P., A result on the hyperbolic aspects in the theory of porous media, Boll. Un. Mat. Ital. A, 3, 69-75 (1989) · Zbl 0718.35053
[22] Marcati, P.; Milani, A. J.; Secchi, P., Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math, 60, 49-69 (1988) · Zbl 0617.35078
[23] Milani, A. J., Long time existence and singular perturbations results for quasilinear hyperbolic equations with small parameter and dissipation term, II, Nonlinear Anal, 11/12, 1371-1381 (1987)
[24] Nishida, T., Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, (Proc. Jap. Acad. Ser. A. Math. Sci, 44 (1968)), 642-646 · Zbl 0167.10301
[25] Serre, D., La compacité par compensation pour les systèmes hyperboliques de deux équations a une dimension d’espace, J. Math. Pures Appl, 85, 423-468 (1986) · Zbl 0601.35070
[26] Smoller, J. A., Shock Waves and Reaction Diffusion Equations (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0508.35002
[27] Tartar, L., The compensated compactness method applied to partial differential equations, (Ball, J. M., Systems of Nonlinear Partial Differential Equations. Systems of Nonlinear Partial Differential Equations, NATO ASI Series (1983), Reidel: Reidel Dordrecht) · Zbl 0437.35004
[29] Vazquez, J. L., Hyperbolic aspects in the theory of the porous medium equation, (Proceedings of the Workshop on Metastability and PDEs (1985), Academic Press: Academic Press Minneapolis) · Zbl 1147.35050
[30] Wagner, D., The transformation from Eulerian to Lagrangean coordinates for solutions with discontinuities, (Carasso, A.; Raviart, P.; Serre, D., Nonlinear Hyperbolic Problems. Nonlinear Hyperbolic Problems, Lecture Notes in Math, Vol. 1270 (1987), Springer-Verlag: Springer-Verlag Berlin)
[32] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[33] De Wiest, R. J.M, Hydrogeology (1965), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.