Ogawa, Takayoshi A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. (English) Zbl 0715.35073 Nonlinear Anal., Theory Methods Appl. 14, No. 9, 765-769 (1990). The author gives a new proof of a version of Trudinger’s inequality for unbounded domains in \({\mathbb{R}}^ 2\). This proof uses the properties of the free Schrödinger propagator. The obtained inequality is applied to prove the uniqueness of weak solutions to nonlinear Schrödinger equations. Reviewer: C.Popa Cited in 1 ReviewCited in 69 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:Trudinger’s inequality; uniqueness PDF BibTeX XML Cite \textit{T. Ogawa}, Nonlinear Anal., Theory Methods Appl. 14, No. 9, 765--769 (1990; Zbl 0715.35073) Full Text: DOI References: [1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101 [2] Cazenave, T., Equations de Schrödinger non linéaires en dimension deux, Proc. R. Soc. Edinb., 84A, 327-346 (1979) · Zbl 0428.35021 [3] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (1983), Springer: Springer Berlin · Zbl 0562.35001 [4] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equation I, the Cauchy problem, general case, J. funct. Analysis, 32, 1-32 (1979) · Zbl 0396.35028 [5] Lions, J. L., Quelques méthodes de résolution des problémes aux limites non linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603 [6] Vladimirov, M. V., On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Soviet Math. Dokl., 29, 281-284 (1984) · Zbl 0585.35019 [7] Yao, J-Q., Comportement à l’infini des solutions d’une équation de Schrödinger non linéaire dans un domaine extér, C.r. Acad. Sci. Paris, 294, 163-166 (1982) · Zbl 0511.35078 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.