×

On the geometry of harmonic morphisms. (English) Zbl 0715.53029

Author’s abstract: “Let \(\pi\) : \(M\to B\) be a horizontally conformal submersion. We give necessary curvature conditions on the manifolds M and B, which lead to non-existence results for certain horizontally conformal maps, and harmonic morphisms. We then classify all such maps between open subsets of Euclidean spaces, which additionally have totally geodesic fibres and are horizontally homothetic. They are orthogonal projections on each connected component, followed by a homothety.”
Reviewer: J.Szilasi

MSC:

53C12 Foliations (differential geometric aspects)
58E20 Harmonic maps, etc.
53A30 Conformal differential geometry (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baird, J. Austral. Math. Soc.
[2] DOI: 10.1007/BF01450078 · Zbl 0621.58011 · doi:10.1007/BF01450078
[3] DOI: 10.1007/BFb0096222 · doi:10.1007/BFb0096222
[4] Baird, Harmonic Maps with Symmetry, Harmonic Morphisms and Deformations of Metrics (1983) · Zbl 0515.58010
[5] DOI: 10.1307/mmj/1028999604 · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[6] Johnson, J. Differential Geom. 15 pp 225– (1980)
[7] Baird, Harmonic morphisms, Seifert fibre spaces and conformal foliations (1990) · Zbl 0755.58019
[8] Gromoll, Riemannsche Geometrie im Gro?en 55 (1975) · Zbl 0293.53001 · doi:10.1007/BFb0079185
[9] Fuglede, Ann. Inst. Fourier (Grenoble) 28 pp 107– (1978) · Zbl 0339.53026 · doi:10.5802/aif.691
[10] DOI: 10.1112/blms/14.2.98 · Zbl 0491.53010 · doi:10.1112/blms/14.2.98
[11] DOI: 10.1112/blms/20.5.385 · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[12] DOI: 10.2307/1999028 · Zbl 0507.53032 · doi:10.2307/1999028
[13] Besse, Einstein Manifolds (1987) · doi:10.1007/978-3-540-74311-8
[14] Ishihara, J. Math. Kyoto Univ. 19 pp 215– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.