×

zbMATH — the first resource for mathematics

Multidimensional constant linear systems. (English) Zbl 0715.93014
From the text: The starting point for this work was the paper of J. C. Willems [Automatica, 22, 561-580 (1986; Zbl 0604.62090)]. Whereas the techniques used in this paper are new for system theory as far as I (the author) know, the basic notions and the formulation of many results are derived from the one-dimensional models as, hopefully, every system theorist can realize.
The following subjects are treated: input-output structures of systems and their transfer matrix, signal flow spaces and graphs of systems and block diagrams, transfer equivalence and (minimal) realizations, controllability and observability, rank singularities and their connection with the integral representation theorem, invertible systems, the constructive solution of the Cauchy problem and convolutional transfer operators for discrete systems.
Reviewer: J.W.Nieuwenhuis

MSC:
93B25 Algebraic methods
93C05 Linear systems in control theory
39A10 Additive difference equations
93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
44A40 Calculus of Mikusiński and other operational calculi
93B07 Observability
94C99 Circuits, networks
44A55 Discrete operational calculus
93B15 Realizations from input-output data
35E20 General theory of PDEs and systems of PDEs with constant coefficients
93C35 Multivariable systems, multidimensional control systems
93B20 Minimal systems representations
35N05 Overdetermined systems of PDEs with constant coefficients
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baratchart L., On discrete n-dimensional linear constant systems, in [BL], 3-8 · Zbl 0594.93018
[2] Berg L., Introduction to the operational calculus, North-Holland 1967 · Zbl 0145.37701
[3] Bisiacco M., E. Fornasini, G. Marchesini, Dynamic regulation of 2d-systems: A state space approach, Linear Algebra and its Applications 122-124 (1989), 195-218 · Zbl 0678.93025
[4] Björk J.-E., Rings of Differential Operators, North-Holland 1979
[5] Byrnes C.I., A. Lindquist (Eds.), Frequency Domain and State Space Methods for Linear Systems, North-Holland 1986
[6] Byrnes C.I., C.F. Martin (Eds.), Geometrical Methods for the Theory of Linear Systems, D.Reidel 1980 · Zbl 0489.93001
[7] Borel A. et al., Algebraic D-modules, Academic Press 1989
[8] Bose N. K. (Editor), Multidimensional systems: Theory and applications, IEEE Press 1979, New York · Zbl 0399.90001
[9] Bose N. K. (Editor), Multidimensional systems theory, D. Reidel Publishing Company 1985 · Zbl 0566.93030
[10] Bourbaki N., Commutative algebra, Hermann, Paris 1972 · Zbl 0279.13001
[11] Bourbaki N., Algèbre Ch. 10 (Algèbre homologique), Masson, Paris 1980 · Zbl 0455.18010
[12] Bourbaki N., Theorie des Ensembles I, Hermann 1956 · Zbl 0074.27701
[13] Buchberger B., Gröbner bases: An algorithmic method in polynomial ideal theory, in [BOS2], 184-232 · Zbl 0587.13009
[14] Blomberg H., R. Ylinen, Algebraic theory for multivariable linear systems, Academic Press 1983 · Zbl 0556.93016
[15] Chen W. K., Applied graph theory. Graphs and electrical networks, North-Holland 1976 · Zbl 0325.05102
[16] Conte G., A.M.Perdon, T.Kaczorek, A geometric approach to singular 2D linear systems, Proc. IFAC workshop Prague 1988 · Zbl 0658.93021
[17] Ehrenpreis L., Fourier analysis in several complex variables, Wiley Interscience Publishers 1970 · Zbl 0195.10401
[18] Fornasini E., G. Marchesini, State-space realization theory of two-dimensional filters, IEEE Trans. Aut. Cont. 21 (1976), 484-492 · Zbl 0332.93072
[19] Fornasini E., Doubly indexed dynamical systems: State-space models and structural properties, Math. Systems Theory 12 (1978), 59-72 · Zbl 0392.93034
[20] Fornasini E., Structure and Properties of Two-Dimensional Systems, in [TZ], 37-88
[21] Furukawa A., T.Sasaki, H.Kobayashi, Gröbner basis of a module over K[x1,?,xn] and polynomial solutions of a system of linear equations, Proc. Symsac 1986 (Waterloo), 1986
[22] Fuchs L., Teilweise geordnete algebraische Strukturen, Vandenhoek und Ruprecht 1966 · Zbl 0154.00708
[23] Gabriel P., Etude infinitésimale des schémas en groupes, in Sch?mas en Groupes I, Lecture Notes in Mathematics 151 (1970), 476-562, Springer Verlag
[24] Grauert H., R. Remmert, Analytische Stellenalgebren, Springer 1971
[25] Grauert H., R. Remmert, Coherent analytic sheaves, Springer 1984
[26] Grauert H., R. Remmert, Theorie der Steinschen Räume, Springer 1977 · Zbl 0379.32001
[27] Gregor J., Convolutional solutions of partial difference equations, preprint 1988, to appear in MCSS
[28] Hauger G., Injektive Moduln über Ringen linearer Differentialoperatoren, Monatshefte Math. 86 (1978), 189-201 · Zbl 0386.16005
[29] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann.Math. 79 (1964), 109-326 · Zbl 0122.38603
[30] Hörmander L., The analysis of linear partial differential operators I, Springer 1983
[31] Hörmander L., Complex analysis in several variables, North-Holland 1973
[32] Jacobson N., Structure of rings, American Mathematical Society Colloquium Publications 37, Providence 1968 · Zbl 0218.17010
[33] Kailath T., Linear systems, Prentice-Hall 1980 · Zbl 0454.93001
[34] Kamen E.W., An operator theory of linear functional differential equations, J. Diff. Equations 27 (1978), 274-297 · Zbl 0365.34080
[35] Kashiwara M., Systems of microdifferential equations, Birkhäuser 1983 · Zbl 0521.58057
[36] Kashiwara M., T. Kawai, T. Kimura, Foundations of algebraic analysis, Princeton University Press 1986 · Zbl 0605.35001
[37] Köthe G., Topologische lineare Räume I, Springer 1960
[38] Kuo B.C., Automatic Control Systems, Prentice-Hall 1987
[39] Lejeune-Jalabert M., Effectivité de calcul polynomiaux, Cours de DEA 1984/85, Université de Grenoble
[40] Lelong P., Fonctionelles analytiques et fonctions entières (n variables), Les Presses de l’Université de Montreal 1968 · Zbl 0194.38801
[41] Lim J.S., A.V. Oppenheim (Editors), Advanced topics in signal processing, Prentice Hall 1988 · Zbl 0679.94001
[42] Macaulay M.S., The algebraic theory of modular systems, Cambridge 1916, reprint by Stechert-Hafner 1964 · JFM 46.0167.01
[43] Macaulay M.S., Some properties of enumeration in the theory of modular systems, Proc.London Math.Soc. 26(1927), 531-555 · JFM 53.0104.01
[44] Malgrange B., Systèmes différentiels à coefficients constants, in Séminaire Bourbaki Vol. 1962/1963, 246.01-246.11
[45] Matlis E., Injective modules over noetherian rings, Pac. J. Math. 8 (1958), 511-528 · Zbl 0084.26601
[46] Matsumura M., Commutative ring theory, Cambridge University Press 1986 · Zbl 0603.13001
[47] Morf M., B. Levy, S.-Y. Kung, New results on 2-d systems theory I: 2-d polynomial matrices, factorizations and coprimeness, in [BOS1], p. 54-65
[48] Mumford D., Introduction to algebraic geometry, Lecture Notes, Harvard University.
[49] Oberst U., Duality theory for Grothendieck categories and linearly compact rings, J. Algebra 15 (1970), 473-542 · Zbl 0274.18011
[50] Oberst U., Multidimensional constant linear systems I, II, III, Innsbruck July 1988?January 1989, Preprints
[51] Palamodov V.P., Linear differential operators with constant coefficients, Springer 1970 · Zbl 0191.43401
[52] Pauer F., Gröbner Basen und ihre Anwendungen, to appear in Überblicke Mathematik, Vieweg 1990
[53] Przeworska-Rolewicz D., Algebraic Analysis, D. Reidel 1988 · Zbl 0696.47002
[54] Rocha P., Structure and Representation of 2-D Systems, Thesis, Groningen, February 1990
[55] Roesser R. P., A discrete state-space model for linear image processing, IEEE Trans. Aut. Cont. 20 (1975), 1-10 · Zbl 0304.68099
[56] Roos J.E., Locally noetherian categories and generalized strictly linearly compact rings. Applications, in Lecture Notes in Mathematics 92 (1969), 197-277, Springer · Zbl 0211.32602
[57] Rosenbrock H., State-space and multivariable theory, Nelson 1970 · Zbl 0246.93010
[58] Rouchaleau Y., E.D. Sontag, On the existence of minimal realizations of linear dynamical systems over noetherian integral domains, J. Comp. Syst. Sci. 18 (1979), 65-75 · Zbl 0407.93011
[59] Rocha P., J.C. Willems, State for 2-d systems, Lin. Alg. Appl. 122-124 (1989), 1003-1038 · Zbl 0679.93002
[60] Rouchaleau Y., B.F. Wyman, R.E. Kalman, Algebraic structure of linear dynamical systems III. Realization theory over a commutative ring, Proc. Nat. Acad. Sci. (USA) 69 (1972), 3404-3406 · Zbl 0264.34058
[61] Schwartz L., Théorie des distributions, Tome I, II, Hermann, Paris, 1957, 1959. · Zbl 0089.09601
[62] Treves F., Basic linear partial differential equations, Academic Press 1975
[63] Tzafestas S.G. (Editor), Multidimensional systems. Techniques and applications, M. Dekker 1986
[64] Willems J.C., From time-series to linear systems. Part I: Finite dimensional linear time-invariant systems, Automatica 22 (1986), 561-580 · Zbl 0604.62090
[65] Willems J.C., The analysis of feedback systems, MIT Press 1971 · Zbl 0244.93048
[66] Winkler F., A recursive method for computing a Gröbner basis of a module in K[X]r, AAECC-5
[67] Wolowich W.A., Linear Multivariable Systems, Springer 1974
[68] Youla D.G., G. Gnavi, Notes on n-dimensional system theory, IEEE Trans.Circ.Syst. 26(1979), 105-111 · Zbl 0394.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.