×

zbMATH — the first resource for mathematics

Generalist predator dynamics under Kolmogorov versus non-Kolmogorov models. (English) Zbl 1429.92121
Summary: Ecosystems often contain multiple species across two or more trophic levels, with a variety of interactions possible. In this paper we study two classes of models for generalist predators that utilize more than one food source. These models fall into two categories: predator-two prey and predator-prey-subsidy models. For the former, we consider a generalist predator which utilizes two distinct prey species, modelled via a Kolmogorov system of equations with type II response functions. For the latter, we consider a generalist predator which exploits both a prey population and an allochthonous resource which is provided as a subsidy to the system exogenously, again with type II response functions. This latter class of model is no longer Kolmogorov in form, due to an exogenous forcing term modelling the input of the allochthonous resource into the system. We non-dimensionalize both models, so that their respective parameter spaces may be more easily compared, and study the dynamics possible from each type of model, which will then indicate – for specific parameter regimes – which generalist predator’s preferences are more favorable to survival, including the prevalence of coexistence states. We also consider the various non-equilibrium dynamics emergent from such models, and show that the non-Kolmogorov predator-prey-subsidy model of 10 admits more regular dynamics (including steady states and one type of limit cycle), whereas the predator-two prey Kolmogorov model can feature multiple types of limit cycles, as well as multistability resulting in strong sensitivity to initial conditions (with stable limit cycles and steady states both coexisting for the same model parameters). Our results highlight several interesting differences and similarities between Kolmogorov and non-Kolmogorov models for generalist predators.
MSC:
92D25 Population dynamics (general)
92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
Software:
AUTO; MATCONT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrams, P.; Matsuda, H., Effects of adaptive predatory and anti-predator behaviour in a two-preyone-predator system, Evol. Ecol., 7, 3, 312-326 (1993)
[2] Abrams, P. A., The effects of switching behavior on the evolutionary diversification of generalist consumers, Am. Nat., 168, 5, 645-659 (2006)
[3] Adams, L. G.; Farley, S. D.; Stricker, C. A.; Demma, D. J.; Roffler, G. H.; Miller, D. C.; Rye, R. O., Are inland wolf-ungulate systems influenced by marine subsidies of pacific salmon?, Ecol. Appl., 20, 1, 251-262 (2010)
[4] Aguirre, P.; González-Olivares, E.; Sáez, E., Three limit cycles in a leslie-gower predator-prey model with additive allee effect, SIAM J. Appl. Math., 69, 5, 1244-1262 (2009) · Zbl 1184.92046
[5] Angerbjorn, A.; Tannerfeldt, M.; Erlinge, S., Predator-prey relationships: arctic foxes and lemmings, J. Anim. Ecol., 68, 1, 34-49 (1999)
[6] Barnes Jr, V. G., The influence of salmon availability on movements and range of brown bears on southwest kodiak island, Bears, 305-313 (1990)
[7] Bassett, A.; Krause, A. L.; Van Gorder, R. A., Continuous dispersal in a model of predator-prey-subsidy population dynamics, Ecol. Modell., 354, 115-122 (2017)
[8] Bauer, J. W.; Logan, K. A.; Sweanor, L. L.; Boyce, W. M., Scavenging behavior in puma, Southwest. Nat., 50, 4, 466-471 (2005)
[9] Ben-David, M.; Bowyer, R.; Duffy, L.; Roby, D.; Schell, D., Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation, Ecology, 79, 7, 2567-2571 (1998)
[10] Berns, V. D.; Atwell, G. C.; Boone, D. L., Brown bear movements and habitat use at karluk lake, kodiak island, Bears, 293-296 (1980)
[11] Berns, V. D.; Hensel, R. J., Radio tracking brown bears on kodiak island, Bears, 19-25 (1972)
[12] Broer, H.; Saleh, K.; Naudot, V.; Roussarie, R., Dynamics of a predator-prey model with non-monotonic response function, Disc. Cont. Dynamical Syst.-A, 18, 2/3, 221-251 (2007) · Zbl 1129.92061
[13] Clare, E. L.; Fraser, E. E.; Braid, H. E.; Fenton, M. B.; Hebert, P. D., Species on the menu of a generalist predator, the eastern red bat (lasiurus borealis): using a molecular approach to detect arthropod prey, Mol. Ecol., 18, 11, 2532-2542 (2009)
[14] Darimont, C. T.; Paquet, P. C.; Reimchen, T. E., Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal british columbia, BMC Ecol., 8, 1, 14 (2008)
[15] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., Matcont: a matlab package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw. (TOMS), 29, 2, 141-164 (2003) · Zbl 1070.65574
[16] Díaz-Ruiz, F.; Delibes-Mateos, M.; García-Moreno, J. L.; María López-Martín, J.; Ferreira, C.; Ferreras, P., Biogeographical patterns in the diet of an opportunistic predator: the red fox v ulpes vulpes in the i berian p eninsula, Mamm. Rev., 43, 1, 59-70 (2013)
[17] Doedel, E. J., Auto: a program for the automatic bifurcation analysis of autonomous systems, Congr. Numer, 30, 265-284, 25-93 (1981)
[18] Eide, R. M.; Krause, A. L.; Fadai, N. T.; Van Gorder, R. A., Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays, J. Theor. Biol., 451, 19-34 (2018) · Zbl 1397.92568
[19] El-Gohary, A.; Al-Ruzaiza, A., Chaos and adaptive control in two prey, one predator system with nonlinear feedback, Chaos Solit. Fractal., 34, 2, 443-453 (2007) · Zbl 1127.92040
[20] Erbach, A.; Lutscher, F.; Seo, G., Bistability and limit cycles in generalist predator-prey dynamics, Ecol. Complex., 14, 48-55 (2013)
[21] Fisher, J. T.; Wilkinson, L., The response of mammals to forest fire and timber harvest in the north american boreal forest, Mamm. Rev., 35, 1, 51-81 (2005)
[22] Fuentes Sommer, P. E., Analysis of the Rosenzweig-MacArthur model with bifurcation structures and stochastic processes (2016)
[23] Fujii, K., Complexity-stability relationship of two-prey-one-predator species system model: local and global stability, J. Theor. Biol., 69, 4, 613-623 (1977)
[24] Fussell, E. F.; Krause, A. L.; Van Gorder, R. A., Hybrid approach to modeling spatial dynamics of systems with generalist predators, J. Theor. Biol., 462, 26-47 (2019) · Zbl 1406.92661
[25] Gakkhar, S., Existence of chaos in two-prey, one-predator system, Chaos Solitons Fract., 17, 4, 639-649 (2003) · Zbl 1034.92033
[26] Genkai-Kato, M.; Yamamura, N., Profitability of prey determines the response of population abundances to enrichment, Proc. R. Soc. Lond. B, 267, 1460, 2397-2401 (2000)
[27] Gilpin, M. E., Spiral chaos in a predator-prey model, Am. Nat., 113, 2, 306-308 (1979)
[28] Giroux, M.-A.; Berteaux, D.; Lecomte, N.; Gauthier, G.; Szor, G.; Bêty, J., Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an arctic predator, J. Anim. Ecol., 81, 3, 533-542 (2012)
[29] González-Yanez, B.; González-Olivares, E.; MENA-LORCA, J., Multistability on a Leslie-gower Type Predator-prey Model with Nonmonotonic Functional Response, BIOMAT 2006, 359-384 (2007), World Scientific
[30] Grasman, J.; Van Den Bosch, F.; Van Herwaarden, O., Mathematical conservation ecology: a one-predator-two-prey system as case study, Bull. Math. Biol., 63, 2, 259-269 (2001) · Zbl 1323.92167
[31] Halaj, J.; Wise, D. H., Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web, Ecology, 83, 11, 3141-3151 (2002)
[32] Hamilton, W., Notes on food of red foxes in new york and new england, J. Mammal., 16, 1, 16-21 (1935)
[33] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 3, 896-903 (1991)
[34] Henden, J.-A.; Ims, R. A.; Yoccoz, N. G.; Hellström, P.; Angerbjörn, A., Strength of asymmetric competition between predators in food webs ruled by fluctuating prey: the case of foxes in tundra, Oikos, 119, 1, 27-34 (2010)
[35] Hins, C.; Ouellet, J.-P.; Dussault, C.; St-Laurent, M.-H., Habitat selection by forest-dwelling caribou in managed boreal forest of eastern canada: evidence of a landscape configuration effect, For. Ecol. Manage., 257, 2, 636-643 (2009)
[36] Hobbs, N. T.; Swift, D. M., Estimates of habitat carrying capacity incorporating explicit nutritional constraints, J. Wildl. Manage., 814-822 (1985)
[37] Hofbauer, J., On the occurrence of limit cycles in the volterra-lotka equation, Nonlinear Anal., 5, 9, 1003-1007 (1981) · Zbl 0477.92011
[38] Hofbauer, J.; Sigmund, K., Evolutionary games and population dynamics (1998), Cambridge University Press · Zbl 0914.90287
[39] Holling, C. S., The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91, 5, 293-320 (1959)
[40] Holling, C. S., The functional response of invertebrate predators to prey density, Memoir. Entomolog. Soc. Canada, 98, S48, 5-86 (1966)
[41] Houle, M.; Fortin, D.; Dussault, C.; Courtois, R.; Ouellet, J.-P., Cumulative effects of forestry on habitat use by gray wolf (canis lupus) in the boreal forest, Landsc. Ecol., 25, 3, 419-433 (2010)
[42] Hsu, S.-B., On global stability of a predator-prey system, Math. Biosci., 39, 1-2, 1-10 (1978) · Zbl 0383.92014
[43] Hutson, V.; Vickers, G., A criterion for permanent coexistence of species, with an application to a two-prey one-predator system, Math. Biosci., 63, 2, 253-269 (1983) · Zbl 0524.92023
[44] Jansen, J. E.; Van Gorder, R. A., Dynamics from a predator-prey-quarry-resource-scavenger model, Theor. Ecol., 11, 1, 19-38 (2018)
[45] Kar, T.; Ghosh, B., Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator, BioSystems, 109, 2, 220-232 (2012)
[46] Klebanoff, A.; Hastings, A., Chaos in one-predator, two-prey models: cgeneral results from bifurcation theory, Math. Biosci., 122, 2, 221-233 (1994) · Zbl 0802.92017
[47] Kolmogorov, A., Sulla teoria di volterra della lotta per lesistenza, Gi. Inst. Ital. Attuari, 7, 74-80 (1936) · JFM 62.1263.01
[48] Kot, M., Elements of mathematical ecology (2001), Cambridge University Press
[49] Kumar, S.; Srivastava, S.; Chingakham, P., Hopf bifurcation and stability analysis in a harvested one-predator-two-prey model, Appl. Math. Comput., 129, 1, 107-118 (2002) · Zbl 1017.92041
[50] Leeuwen, E.v.; Jansen, V.; Bright, P., How population dynamics shape the functional response in a one-predator-two-prey system, Ecology, 88, 6, 1571-1581 (2007)
[51] Legagneux, P.; Gauthier, G.; Berteaux, D.; Bêty, J.; Cadieux, M.-C.; Bilodeau, F.; Bolduc, E.; McKinnon, L.; Tarroux, A.; Therrien, J.-F., Disentangling trophic relationships in a high arctic tundra ecosystem through food web modeling, Ecology, 93, 7, 1707-1716 (2012)
[52] Levy, D.; Harrington, H. A.; Van Gorder, R. A., Role of seasonality on predator-prey-subsidy population dynamics, J. Theor. Biol., 396, 163-181 (2016) · Zbl 1343.92422
[53] Liu, M.; Wang, K., Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., 23, 5, 751-775 (2013) · Zbl 1279.92088
[54] van Maanen, R.; Vila, E.; Sabelis, M. W.; Janssen, A., Biological control of broad mites (polyphagotarsonemus latus) with the generalist predator amblyseius swirskii, Exp. Appl. Acarol., 52, 1, 29-34 (2010)
[55] Marczak, L. B.; Thompson, R. M.; Richardson, J. S., Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies, Ecology, 88, 1, 140-148 (2007)
[56] Mariani, P.; Andersen, K. H.; Visser, A. W.; Barton, A. D.; Kiørboe, T., Control of plankton seasonal succession by adaptive grazing, Limnol. Oceanogr., 58, 1, 173-184 (2013)
[57] Maron, J. L.; Pearson, D. E.; Fletcher Jr, R. J., Counterintuitive effects of large-scale predator removal on a midlatitude rodent community, Ecology, 91, 12, 3719-3728 (2010)
[58] Messelink, G. J.; van Maanen, R.; van Steenpaal, S. E.; Janssen, A., Biological control of thrips and whiteflies by a shared predator: two pests are better than one, Biol. Control, 44, 3, 372-379 (2008)
[59] Morozov, A.; Petrovskii, S., Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching, PLoS ONE, 8, 9, e74586 (2013)
[60] Mougi, A., Coevolution in a one predator-two prey system, PLoS ONE, 5, 11, e13887 (2010)
[61] Mougi, A.; Nishimura, K., The paradox of enrichment in an adaptive world, Proc. R. Soc. Lond. B, 275, 1651, 2563-2568 (2008)
[62] Nevai, A. L.; Van Gorder, R. A., Effect of resource subsidies on predator-prey population dynamics: a mathematical model, J. Biol. Dyn., 6, 2, 891-922 (2012)
[63] Nomdedeu, M. M.; Willen, C.; Schieffer, A.; Arndt, H., Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web, Mar. Biol., 159, 11, 2423-2430 (2012)
[64] Nomikou, M.; Sabelis, M. W.; Janssen, A., Pollen subsidies promote whitefly control through the numerical response of predatory mites, Biocontrol, 55, 2, 253-260 (2010)
[65] Parshad, R. D.; Bhowmick, S.; Quansah, E.; Basheer, A.; Upadhyay, R. K., Predator interference effects on biological control: the paradox of the generalist predator revisited, Commun. Nonlinear Sci. Numer. Simul., 39, 169-184 (2016)
[66] Reimchen, T., Some ecological and evolutionary aspects of bear-salmon interactions in coastal british columbia, Can. J. Zool., 78, 3, 448-457 (2000)
[67] Rinaldi, S.; Muratori, S.; Kuznetsov, Y., Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55, 1, 15-35 (1993) · Zbl 0756.92026
[68] Rose, M. D.; Polis, G. A., The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea, Ecology, 79, 3, 998-1007 (1998)
[69] Rosenzweig, M. L., Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 3969, 385-387 (1971)
[70] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 895, 209-223 (1963)
[71] Roth, J. D., Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice, Oecologia, 133, 1, 70-77 (2002)
[72] Roth, J. D., Variability in marine resources affects arctic fox population dynamics, J. Anim. Ecol., 72, 4, 668-676 (2003)
[73] Rutz, C.; Bijlsma, R. G., Food-limitation in a generalist predator, Proc. R. Soc. Lond. B, 273, 1597, 2069-2076 (2006)
[74] Sanders, D.; Schaefer, M.; Platner, C.; Griffiths, G. J., Intraguild interactions among generalist predator functional groups drive impact on herbivore and decomposer prey, Oikos, 120, 3, 418-426 (2011)
[75] Schaffer, W. M.; Kot, M., Chaos in ecological systems: the coals that newcastle forgot, Trend. Ecol. Evolut., 1, 3, 58-63 (1986)
[76] Seydel, R., Practical bifurcation and stability analysis, 5 (2009), Springer Science & Business Media
[77] Shen, L.; Van Gorder, R. A., Predator-prey-subsidy population dynamics on stepping-stone domains, J. Theor. Biol., 420, 241-258 (2017) · Zbl 1370.92148
[78] Sigmund, K., Kolmogorov and Population Dynamics, Kolmogorov’s heritage in mathematics, 177-186 (2007), Springer · Zbl 1222.01036
[79] Smout, S.; Asseburg, C.; Matthiopoulos, J.; Fernández, C.; Redpath, S.; Thirgood, S.; Harwood, J., The functional response of a generalist predator, PLoS ONE, 5, 5, e10761 (2010)
[80] Snyder, W. E.; Wise, D. H., Predator interference and the establishment of generalist predator populations for biocontrol, Biol. Control, 15, 3, 283-292 (1999)
[81] Sunde, P.; Thorup, K.; Jacobsen, L. B.; Rahbek, C., Weather conditions drive dynamic habitat selection in a generalist predator, PLoS ONE, 9, 2, e88221 (2014)
[82] Sweitzer, R. A.; Jenkins, S. H.; Berger, J., Near-extinction of porcupines by mountain lions and consequences of ecosystem change in the great basin desert, Conserv. Biol., 11, 6, 1407-1417 (1997)
[83] Symondson, W.; Sunderland, K.; Greenstone, M., Can generalist predators be effective biocontrol agents?, Annu. Rev. Entomol., 47, 1, 561-594 (2002)
[84] Takeuchi, Y.; Adachi, N., Existence and bifurcation of stable equilibrium in two-prey, one-predator communities, Bull. Math. Biol., 45, 6, 877-900 (1983) · Zbl 0524.92025
[85] Terraube, J.; Arroyo, B., Factors influencing diet variation in a generalist predator across its range distribution, Biodivers. Conserv., 20, 10, 2111-2131 (2011)
[86] Thiemann, G. W.; Iverson, S. J.; Stirling, I., Polar bear diets and arctic marine food webs: insights from fatty acid analysis, Ecol. Monogr., 78, 4, 591-613 (2008)
[87] Toyokawa, W., Scrounging by foragers can resolve the paradox of enrichment, R. Soc. Open Sci., 4, 3, 160830 (2017)
[88] Turchin, P., Complex population dynamics: A theoretical/empirical synthesis, 35 (2003), Princeton University Press · Zbl 1062.92077
[89] Turchin, P.; Hanski, I., An empirically based model for latitudinal gradient in vole population dynamics, Am. Nat., 149, 5, 842-874 (1997)
[90] Tyson, R.; Lutscher, F., Seasonally varying predation behavior and climate shifts are predicted to affect predator-prey cycles, Am. Nat., 188, 5, 539-553 (2016)
[91] Vance, R. R., Predation and resource partitioning in one predator-two prey model communities, Am. Nat., 112, 987, 797-813 (1978)
[92] Vayenas, D.; Pavlou, S., Chaotic dynamics of a food web in a chemostat, Math. Biosci., 162, 1-2, 69-84 (1999) · Zbl 0947.92030
[93] Weber, D. C.; Lundgren, J. G., Effect of prior diet on consumption and digestion of prey and non-prey food by adults of the generalist predator coleomegilla maculata, Entomol. Exp. Appl., 140, 2, 146-152 (2011)
[94] Welch, K.; Pfannenstiel, R.; Harwood, J., The role of generalist predators in terrestrial food webs: lessons for agricultural pest management, Biodivers. Insect Pests, 41-56 (2012)
[95] Willson, J. D.; Hopkins, W. A., Prey morphology constrains the feeding ecology of an aquatic generalist predator, Ecology, 92, 3, 744-754 (2011)
[96] Willson, M. F., Mammals as seed-dispersal mutualists in north america, Oikos, 159-176 (1993)
[97] Wollkind, D. J.; Collings, J. B.; Logan, J. A., Temperature-mediated stability of the interaction between spider mites and predatory mites in orchards, Exp. Appl. Acarol., 5, 3-4, 265-292 (1988)
[98] Yamauchi, A.; Yamamura, N., Effects of defense evolution and diet choice on population dynamics in a one-predator-two-prey system, Ecology, 86, 9, 2513-2524 (2005)
[99] Zeeman, M. L., Hopf bifurcations in competitive three-dimensional lotka-volterra systems, Dyn. Stabil. Syst., 8, 3, 189-216 (1993) · Zbl 0797.92025
[100] Zhang, X.; Li, W.; Liu, M.; Wang, K., Dynamics of a stochastic holling ii one-predator two-prey system with jumps, Physica A, 421, 571-582 (2015) · Zbl 1395.37059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.