×

zbMATH — the first resource for mathematics

Multi-period portfolio selection with drawdown control. (English) Zbl 1430.91088
Summary: In this article, model predictive control is used to dynamically optimize an investment portfolio and control drawdowns. The control is based on multi-period forecasts of the mean and covariance of financial returns from a multivariate hidden Markov model with time-varying parameters. There are computational advantages to using model predictive control when estimates of future returns are updated every time new observations become available, because the optimal control actions are reconsidered anyway. Transaction and holding costs are discussed as a means to address estimation error and regularize the optimization problem. The proposed approach to multi-period portfolio selection is tested out of sample over two decades based on available market indices chosen to mimic the major liquid asset classes typically considered by institutional investors. By adjusting the risk aversion based on realized drawdown, it successfully controls drawdowns with little or no sacrifice of mean-variance efficiency. Using leverage it is possible to further increase the return without increasing the maximum drawdown.
MSC:
91G10 Portfolio theory
93B45 Model predictive control
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk, 3(2), 5-39.
[2] Ang, A., & Bekaert, G. (2004). How regimes affect asset allocation. Financial Analysts Journal, 60(2), 86-99.
[3] Ang, A., & Timmermann, A. (2012). Regime changes and financial markets. Annual Review of Financial Economics, 4(1), 313-337.
[4] Ardia, D., Bolliger, G., Boudt, K., & Gagnon-Fleury, J. P. (2017). The impact of covariance misspecification in risk-based portfolios. Annals of Operations Research, 254(1-2), 1-16. · Zbl 1406.91398
[5] Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203-228. · Zbl 0980.91042
[6] Bae, G. I., Kim, W. C., & Mulvey, J. M. (2014). Dynamic asset allocation for varied financial markets under regime switching framework. European Journal of Operational Research, 234(2), 450-458. · Zbl 1304.91179
[7] Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research, 30(5), 961-981. · Zbl 0491.90004
[8] Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Proceedings of the National Academy of Sciences, 42(10), 767-769. · Zbl 0071.14110
[9] Bemporad, A., Bellucci, L., & Gabbriellini, T. (2014). Dynamic option hedging via stochastic model predictive control based on scenario simulation. Quantitative Finance, 14(10), 1739-1751. · Zbl 1402.91754
[10] Bertsimas, D., Lauprete, G. J., & Samarov, A. (2004). Shortfall as a risk measure: Properties, optimization and applications. Journal of Economic Dynamics & Control, 28(7), 1353-1381. · Zbl 1200.91133
[11] Black, F., & Jones, R. W. (1987). Simplifying portfolio insurance. Journal of Portfolio Management, 14(1), 48-51.
[12] Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.
[13] Black, F., & Perold, A. F. (1992). Theory of constant proportion portfolio insurance. Journal of Economic Dynamics & Control, 16(3-4), 403-426. · Zbl 0825.90056
[14] Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654. · Zbl 1092.91524
[15] Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press. · Zbl 1058.90049
[16] Boyd, S., Mueller, M. T., O’Donoghue, B., & Wang, Y. (2014). Performance bounds and suboptimal policies for multi-period investment. Foundations and Trends in Optimization, 1(1), 1-72.
[17] Boyd, S., Busseti, E., Diamond, S., Kahn, R. N., Koh, K., Nystrup, P., et al. (2017). Multi-period trading via convex optimization. Foundations and Trends in Optimization, 3(1), 1-76.
[18] Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45(1), 21-58. · Zbl 0800.90048
[19] Brodie, J., Daubechies, I., Mol, C. D., Giannone, D., & Loris, I. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12267-12272. · Zbl 1203.91271
[20] Bulla, J., Mergner, S., Bulla, I., Sesboüé, A., & Chesneau, C. (2011). Markov-switching asset allocation: Do profitable strategies exist? Journal of Asset Management, 12(5), 310-321.
[21] Chaudhuri, S. E., & Lo, A. W. (2016). Spectral portfolio theory. Available at SSRN, 2788999, 1-44.
[22] Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6-11.
[23] Cui, X., Gao, J., Li, X., & Li, D. (2014). Optimal multi-period mean-variance policy under no-shorting constraint. European Journal of Operational Research, 234(2), 459-468. · Zbl 1304.91185
[24] Dai, M., Xu, Z. Q., & Zhou, X. Y. (2010). Continuous-time Markowitz’s model with transaction costs. SIAM Journal on Financial Mathematics, 1(1), 96-125. · Zbl 1187.93139
[25] Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45(1), 59-76. · Zbl 0785.90008
[26] DeMiguel, V., Garlappi, L., Nogales, F., & Uppal, R. (2009a). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. · Zbl 1232.91617
[27] DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus naive diversification: How inefficient is the \(1/N\) portfolio strategy? Review of Financial Studies, 22(5), 1915-1953.
[28] Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(83), 1-5. · Zbl 1360.90008
[29] Dias, J. G., Vermunt, J. K., & Ramos, S. (2015). Clustering financial time series: New insights from an extended hidden Markov model. European Journal of Operational Research, 243(3), 852-864. · Zbl 1347.62224
[30] Dohi, T., & Osaki, S. (1993). A note on portfolio optimization with path-dependent utility. Annals of Operations Research, 45(1), 77-90. · Zbl 0785.90009
[31] Domahidi, A., Chu, E., & Boyd, S. (2013). ECOS: An SOCP solver for embedded systems. In Proceedings of the 12th European control conference (pp. 3071-3076).
[32] Downing, C., Madhavan, A., Ulitsky, A., & Singh, A. (2015). Portfolio construction and tail risk. Journal of Portfolio Management, 42(1), 85-102.
[33] Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176(1), 191-220. · Zbl 1233.91243
[34] Fastrich, B., Paterlini, S., & Winker, P. (2015). Constructing optimal sparse portfolios using regularization methods. Computational Management Science, 12(3), 417-434. · Zbl 1355.91077
[35] Fiecas, M., Franke, J., von Sachs, R., & Kamgaing, J. T. (2017). Shrinkage estimation for multivariate hidden Markov models. Journal of the American Statistical Association, 112(517), 424-435.
[36] Fleming, J., Kirby, C., & Ostdiek, B. (2001). The economic value of volatility timing. Journal of Finance, 56(1), 329-352.
[37] Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York: Springer. · Zbl 1108.62002
[38] Garlappi, L., Uppal, R., & Wang, T. (2006). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41-81.
[39] Gârleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction costs. Journal of Finance, 68(6), 2309-2340.
[40] Goltz, F., Martellini, L., & Simsek, K. D. (2008). Optimal static allocation decisions in the presence of portfolio insurance. Journal of Investment Management, 6(2), 37-56.
[41] Grinold, R. C. (2006). A dynamic model of portfolio management. Journal of Investment Management, 4(2), 5-22.
[42] Grinold, R. C., & Kahn, R. N. (2000). Active portfolio management: A quantitative approach for providing superior returns and controlling risk (2nd ed.). New York: McGraw-Hill.
[43] Grossman, S. J., & Zhou, Z. (1993). Optimal investment strategies for controlling drawdowns. Mathematical Finance, 3(3), 241-276. · Zbl 0884.90031
[44] Guidolin, M., & Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11), 3503-3544. · Zbl 1163.91399
[45] Gülpınar, N., & Rustem, B. (2007). Worst-case robust decisions for multi-period mean-variance portfolio optimization. European Journal of Operational Research, 183(3), 981-1000. · Zbl 1138.91446
[46] Herzog, F., Dondi, G., & Geering, H. P. (2007). Stochastic model predictive control and portfolio optimization. International Journal of Theoretical and Applied Finance, 10(2), 203-233. · Zbl 1137.91449
[47] Ho, M., Sun, Z., & Xin, J. (2015). Weighted elastic net penalized mean-variance portfolio design and computation. SIAM Journal on Financial Mathematics, 6(1), 1220-1244. · Zbl 1330.91173
[48] Ibragimov, R., Jaffee, D., & Walden, J. (2011). Diversification disasters. Journal of Financial Economics, 99(2), 333-348.
[49] Ilmanen, A. (2012). Do financial markets reward buying or selling insurance and lottery tickets? Financial Analysts Journal, 68(5), 26-36.
[50] Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. Journal of Finance, 58(4), 1651-1683.
[51] Jorion, P. (1985). International portfolio diversification with estimation risk. Journal of Business, 58(3), 259-278.
[52] Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42(3), 621-656.
[53] Khreich, W., Granger, E., Miri, A., & Sabourin, R. (2012). A survey of techniques for incremental learning of HMM parameters. Information Sciences, 197, 105-130.
[54] Kinlaw, W., Kritzman, M., & Turkington, D. (2014). The divergence of high- and low-frequency estimation: Causes and consequences. Journal of Portfolio Management, 40(5), 156-168.
[55] Kinlaw, W., Kritzman, M., & Turkington, D. (2015). The divergence of high- and low-frequency estimation: Implications for performance measurement. Journal of Portfolio Management, 41(3), 14-21.
[56] Kolm, P., Tütüncü, R., & Fabozzi, F. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371. · Zbl 1304.91200
[57] Kritzman, M., & Li, Y. (2010). Skulls, financial turbulence, and risk management. Financial Analysts Journal, 66(5), 30-41.
[58] Kritzman, M., Page, S., & Turkington, D. (2012). Regime shifts: Implications for dynamic strategies. Financial Analysts Journal, 68(3), 22-39.
[59] Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603-621.
[60] Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365-411. · Zbl 1032.62050
[61] Leland, H. E. (1980). Who should buy portfolio insurance? Journal of Finance, 35(2), 581-594.
[62] Li, J. (2015). Sparse and stable portfolio selection with parameter uncertainty. Journal of Business & Economic Statistics, 33(3), 381-392.
[63] Lim, A. E., Shanthikumar, J. G., & Vahn, G. Y. (2011). Conditional value-at-risk in portfolio optimization: Coherent but fragile. Operations Research Letters, 39(3), 163-171. · Zbl 1219.91130
[64] López de Prado, M. (2016). Building diversified portfolios that outperform out of sample. Journal of Portfolio Management, 42(4), 59-69.
[65] Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 394-419.
[66] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77-91.
[67] Markowitz, H. (2014). Mean-variance approximations to expected utility. European Journal of Operational Research, 234(2), 346-355. · Zbl 1304.91203
[68] Mattingley, J., & Boyd, S. (2012). CVXGEN: a code generator for embedded convex optimization. Optimization and Engineering, 13(1), 1-27. · Zbl 1293.65095
[69] Mei, X., DeMiguel, V., & Nogales, F. J. (2016). Multiperiod portfolio optimization with multiple risky assets and general transaction costs. Journal of Banking & Finance, 69, 108-120.
[70] Meindl, P. J., & Primbs, J. A. (2008). Dynamic hedging of single and multi-dimensional options with transaction costs: A generalized utility maximization approach. Quantitative Finance, 8(3), 299-312. · Zbl 1134.91367
[71] Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. Review of Economics and Statistics, 51(3), 247-257.
[72] Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183. · Zbl 1257.91043
[73] Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics, 8(4), 323-361.
[74] Michaud, R. O. (1989). The Markowitz optimization Enigma: Is ’optimized’ optimal? Financial Analysts Journal, 45(1), 31-42.
[75] Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. Journal of Finance, 72(4), 1611-1644.
[76] Mossin, J. (1968). Optimal multiperiod portfolio policies. Journal of Business, 41(2), 215-229.
[77] Mulvey, J. M., & Shetty, B. (2004). Financial planning via multi-stage stochastic optimization. Computers & Operations Research, 31(1), 1-20. · Zbl 1105.90345
[78] Nystrup, P., Hansen, B. W., Madsen, H., & Lindström, E. (2015a). Regime-based versus static asset allocation: Letting the data speak. Journal of Portfolio Management, 42(1), 103-109.
[79] Nystrup, P., Madsen, H., & Lindström, E. (2015b). Stylised facts of financial time series and hidden Markov models in continuous time. Quantitative Finance, 15(9), 1531-1541. · Zbl 1398.91691
[80] Nystrup, P., Hansen, B. W., Larsen, H. O., Madsen, H., & Lindström, E. (2017a). Dynamic allocation or diversification: A regime-based approach to multiple assets. Journal of Portfolio Management, 44(2), 62-73.
[81] Nystrup, P., Madsen, H., & Lindström, E. (2017b). Long memory of financial time series and hidden Markov models with time-varying parameters. Journal of Forecasting, 36(8), 989-1002. · Zbl 1397.60104
[82] Nystrup, P., Madsen, H., & Lindström, E. (2018). Dynamic portfolio optimization across hidden market regimes. Quantitative Finance, 18(1), 83-95. · Zbl 1400.91560
[83] Pedersen, L. H. (2009). When everyone runs for the exit. International Journal of Central Banking, 5(4), 177-199.
[84] Pedersen, L. H. (2015). Efficiently inefficient: how smart money invests and market prices are determined. Princeton: Princeton University Press.
[85] Pınar, M. Ç. (2007). Robust scenario optimization based on downside-risk measure for multi-period portfolio selection. OR Spectrum, 29(2), 295-309. · Zbl 1126.91032
[86] Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21-42.
[87] Rubinstein, M., & Leland, H. E. (1981). Replicating options with positions in stock and cash. Financial Analysts Journal, 37(4), 63-72.
[88] Rydén, T., Teräsvirta, T., & Åsbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics, 13(3), 217-244.
[89] Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. Review of Economics and Statistics, 51(3), 239-246.
[90] Scutellà, M. G., & Recchia, R. (2013). Robust portfolio asset allocation and risk measures. Annals of Operations Research, 204(1), 145-169. · Zbl 1269.91081
[91] Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119-138.
[92] Sharpe, W. F. (1994). The Sharpe ratio. Journal of Portfolio Management, 21(1), 49-58.
[93] Smidl, V., & Gustafsson, F. (2012) Bayesian estimation of forgetting factor in adaptive filtering and change detection. In Proceedings of the 2012 IEEE statistical signal processing workshop (pp 197-200).
[94] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the third Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 197-206), University of California Press, Berkeley. · Zbl 0073.35602
[95] Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., & Buhmann, J. M. (2001). Topology free hidden Markov models: Application to background modeling. Proceedings of the eighth IEEE international conference on computer vision (Vol. 1, pp. 294-301).
[96] Stoyanov, S. V., Rachev, S. T., & Fabozzi, F. J. (2012). Sensitivity of portfolio VaR and CVaR to portfolio return characteristics. Annals of Operations Research, 205(1), 169-187. · Zbl 1269.91082
[97] von Neumann, J., & Morgenstern, O. (1953). Theory of games and economic behavior (3rd ed.). Princeton: Princeton University Press.
[98] Zenios, S. A. (2007). Practical financial optimization: Decision making for financial engineers. Malden: Blackwell. · Zbl 1142.91008
[99] Zhou, G., & Zhu, Y. (2010). Is the recent financial crisis really a “once-in-a-century” event? Financial Analysts Journal, 66(1), 24-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.