×

zbMATH — the first resource for mathematics

The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy. (English) Zbl 1434.65082

MSC:
65K10 Numerical optimization and variational techniques
65R10 Numerical methods for integral transforms
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C25 Convex programming
Software:
PDCO; QuickPALM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Axelrod D 1981 Cell-substrate contacts illuminated by total internal reflection fluorescence J. Cell Biol.89 141-5
[2] Axelrod D 2008 Total internal reflection fluorescence microscopy Methods Cell Biol.89 169-221
[3] Azaïs J M, de Castro Y and Gamboa F 2015 Spike detection from inaccurate samplings Appl. Comput. Harmon. Anal.38 177-95 · Zbl 1308.94046
[4] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci.2 183-202 · Zbl 1175.94009
[5] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Imaging intracellular fluorescent proteins at nanometer resolution Science313 1642-5
[6] Bhaskar B N, Tang G and Recht B 2013 Atomic norm denoising with applications to line spectral estimation IEEE Trans. Signal Process.61 5987-99 · Zbl 1394.94079
[7] Blumensath T and Davies M E 2008 Iterative thresholding for sparse approximations J. Fourier Anal. Appl.14 629-54 · Zbl 1175.94060
[8] Blumensath T and Davies M E 2009 Iterative hard thresholding for compressed sensing Appl. Comput. Harmon. Anal.27 265-74 · Zbl 1174.94008
[9] Boulanger J, Gueudry C, Münch D, Cinquin B, Paul-Gilloteaux P, Bardin S, Guérin C, Senger F, Blanchoin L and Salamero J 2014 Fast high-resolution 3d total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging Proc. Natl Acad. Sci.111 17164-9
[10] Boyd N, Schiebinger G and Recht B 2017 The alternating descent conditional gradient method for sparse inverse problems SIAM J. Optim.27 616-39 · Zbl 1365.90195
[11] Boyd S and Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press)
[12] Bredies K and Pikkarainen H K 2013 Inverse problems in spaces of measures ESAIM Control Optim. Calc. Var.19 190-218 · Zbl 1266.65083
[13] Cadzow J A 1988 Signal enhancement-a composite property mapping algorithm IEEE Trans. Acoust. Speech Signal Process.36 49-62 · Zbl 0649.93059
[14] Candès E J and Fernandez-Granda C 2013 Super-resolution from noisy data J. Fourier Anal. Appl.19 1229-54 · Zbl 1312.94015
[15] Candès E J and Fernandez-Granda C 2014 Towards a mathematical theory of super-resolution Commun. Pure Appl. Math.67 906-56 · Zbl 1350.94011
[16] Catala P, Duval V and Peyré G 2017 A low-rank approach to off-the-grid sparse deconvolution (to appear in SIAM J. Imaging Sci.)
[17] Chen S S, Donoho D L and Saunders M A 1998 Atomic decomposition by basis pursuit SIAM J. Sci. Comput.20 33-61 · Zbl 0919.94002
[18] Combettes P L and Wajs V R 2005 Signal recovery by proximal forward-backward splitting Multiscale Model. Simul.4 1168-200 · Zbl 1179.94031
[19] Condat L and Hirabayashi A 2015 Cadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurements Sampl. Theory Signal Image Process.14 17-47 · Zbl 1346.94023
[20] Da Costa M F and Dai W 2018 A tight converse to the spectral resolution limit via convex programming IEEE International Symposium on Information Theory (ISIT) 901-5
[21] Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math.57 1413-57 · Zbl 1077.65055
[22] de Castro Y and Gamboa F 2012 Exact reconstruction using Beurling minimal extrapolation J. Math. Anal. Appl.395 336-54 · Zbl 1302.94019
[23] De Castro Y, Gamboa F, Henrion D and Lasserre J B 2017 Exact solutions to super resolution on semi-algebraic domains in higher dimensions IEEE Trans. Inform. Theory63 621-30 · Zbl 1359.94030
[24] Hauer J F, Demeure C J and Scharf L L 1990 Initial results in Prony analysis of power system response signals IEEE Trans. Power Syst.5 80-9
[25] Demanet L and Nguyen N 2015 The recoverability limit for superresolution via sparsity (arXiv:1502.01385)
[26] Demyanov V F and Rubinov A M 1970 Approximate Methods in Optimization Problems vol 32 (Amsterdam: Elsevier)
[27] Den Dekker A and Van den Bos A 1997 Resolution: a survey J. Opt. Soc. Am. A 14 547-57
[28] Denoyelle Q, Duval V and Peyré G 2017 Support recovery for sparse super-resolution of positive measures J. Fourier Anal. Appl.23 1153-94 · Zbl 1417.65223
[29] Donoho D L 1992 Super-resolution via sparsity constraints SIAM J. Math. Anal.23 1309-31 · Zbl 0769.42007
[30] Donoho D L and Johnstone I M 1995 Adapting to unknown smoothness via wavelet shrinkage J. Am. Stat. Assoc.90 1200-24 · Zbl 0869.62024
[31] Dos Santos M C, Déturche R, Vézy C and Jaffiol R 2016 Topography of cells revealed by variable-angle total internal reflection fluorescence microscopy Biophys. J.111 1316-27
[32] Duval V 2019 A characterization of the non-degenerate source condition in super-resolution Inf. Inference: J. IMA (https://doi.org/10.1093/imaiai/iaz002)
[33] Duval V and Peyré G 2015 Exact support recovery for sparse spikes deconvolution Found. Comput. Math.15 1315-55 · Zbl 1327.65104
[34] Duval V and Peyré G 2017 Sparse spikes super-resolution on thin grids I: the Lasso Inverse Problems33 055008 · Zbl 1373.65039
[35] Duval V and Peyré G 2017 Sparse spikes super-resolution on thin grids II: the continuous basis pursuit Inverse Problems33 095008 · Zbl 1392.35332
[36] Efron B, Hastie T, Johnstone I and Tibshirani R 2004 Least angle regression Ann. Stat.32 407-99 (with discussion, and a rejoinder by the authors) · Zbl 1091.62054
[37] Eftekhari A and Thompson A 2018 A bridge between past and present: Exchange and conditional gradient methods are equivalent (arXiv:1804.10243)
[38] Eftekhari A and Wakin M B 2015 Greed is super: a fast algorithm for super-resolution (arXiv:1511.03385)
[39] El Ghaoui L, Viallon V and Rabbani T 2012 Safe feature elimination in sparse supervised learning Pac. J. Optim.8 667-98 · Zbl 1259.65010
[40] Fernandez-Granda C 2013 Support detection in super-resolution Proc. of the 10th Int. Conf. on Sampling Theory and Applications pp 145-8
[41] Fernandez-Granda C 2016 Super-resolution of point sources via convex programming Inf. Inference5 251-303 · Zbl 1386.94027
[42] Figueiredo M A T and Nowak R D 2003 An EM algorithm for wavelet-based image restoration IEEE Trans. Image Process.12 906-16 · Zbl 1279.94015
[43] Flinth A and Weiss P 2018 Exact solutions of infinite dimensional total-variation regularized problems Inf. Inference: J. IMA (https://doi.org/10.1093/imaiai/iay016)
[44] Frank M and Wolfe P 1956 An algorithm for quadratic programming Nav. Res. Logist. Q.3 95-110
[45] Gustafsson M G L 2000 Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy J. Microsc.198 82-7
[46] Harchaoui Z, Juditsky A and Nemirovski A 2015 Conditional gradient algorithms for norm-regularized smooth convex optimization Math. Program.152 75-112 · Zbl 1336.90069
[47] Hell S W and Wichmann J 1994 Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy Opt. Lett.19 780-2
[48] Henriques R, Lelek M, Fornasiero E F, Valtorta F, Zimmer C and Mhlanga M M 2010 Quickpalm: 3d real-time photoactivation nanoscopy image processing in imagej Nat. Methods7 339
[49] Herzet C, Drémeau A and Soussen C 2016 Relaxed recovery conditions for OMP/OLS by exploiting both coherence and decay IEEE Trans. Inf. Theory62 459-70 · Zbl 1359.94100
[50] Hess S, Girirajan T P K and Mason M 2007 Ultra-high resolution imaging by fluorescence photoactivation localization microscopy Biophys. J.91 4258-72
[51] Hua Y and Sarkar T K 1990 Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise IEEE Trans. Acoust. Speech Signal Process.38 814-24 · Zbl 0706.62094
[52] Huang B, Wang W, Bates M and Zhuang X 2008 Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy Science319 810-3
[53] Huang H and Makur A 2011 Backtracking-based matching pursuit method for sparse signal reconstruction IEEE Signal Process. Lett.18 391-4
[54] Huang J, Sun M, Gumpper K, Chi Y and Ma J 2015 3d multifocus astigmatism and compressed sensing (3d macs) based superresolution reconstruction Biomed. Opt. Express6 902-17
[55] Huang J, Sun M, Ma J and Chi Y 2017 Super-resolution image reconstruction for high-density three-dimensional single-molecule microscopy IEEE Trans. Comput. Imaging3 763-73
[56] Jacques L and De Vleeschouwer C 2008 A geometrical study of matching pursuit parametrization IEEE Trans. Signal Process.56 2835-48 · Zbl 1390.94227
[57] Jaggi M 2013 Revisiting frank-wolfe: projection-free sparse convex optimization ICML (1) pp 427-35
[58] Juette M, Gould T J, Lessard M, Mlodzianoski M, Nagpure B S, Thomas Bennett B, Hess S and Bewersdorf J 2008 Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples Nat. Methods5 527-9
[59] Kailath T 1990 ESPRIT-estimation of signal parameters via rotational invariance techniques Opt. Eng.29 296 · Zbl 0701.93090
[60] Kirshner H, Vonesch C and Unser M 2013 Can localization microscopy benefit from approximation theory? IEEE 10th Int. Symp. on Biomedical Imaging pp 588-91
[61] Lasserre J B 2000/01 Global optimization with polynomials and the problem of moments SIAM J. Optim.11 796-817 · Zbl 1010.90061
[62] Lasserre J B 2010 Moments, Positive Polynomials and their Applications(Imperial College Press Optimization Series vol 1) (London: Imperial College Press) p xxii
[63] Levitin E S and Polyak B T 1966 Constrained minimization methods Zh. Vychisl. Mat. Mat. Fiz.6 787-823 · Zbl 0184.38902
[64] Liang J, Fadili J and Peyré G 2017 Activity identification and local linear convergence of forward-backward-type methods SIAM J. Optim.27 408-37 · Zbl 1357.49064
[65] Liao W and Fannjiang A 2016 MUSIC for single-snapshot spectral estimation: stability and super-resolution Appl. Comput. Harmon. Anal.40 33-67 · Zbl 1416.94028
[66] Mallat S and Zhang Z 1994 Matching pursuit with time-frequency dictionaries IEEE Trans. Signal Process.41 3397-415 · Zbl 0842.94004
[67] Massias M, Gramfort A and Salmon J 2017 From safe screening rules to working sets for faster lasso-type solvers (arXiv:1703.07285)
[68] Morgenshtern V I and Candès E J 2016 Super-resolution of positive sources: the discrete setup SIAM J. Imaging Sci.9 412-44 · Zbl 1352.49041
[69] Poon C and Peyré G 2019 Multidimensional sparse super-resolution SIAM J. Math. Anal.51 1-44 · Zbl 1456.94009
[70] Rama Prasanna Pavani S, Thompson M A, Biteen J S, Lord S, Liu N, Twieg R, Piestun R and Moerner W 2009 Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function Proc. Natl Acad. Sci. USA106 2995-9
[71] Reemtsen R and Rückmann J J 1998 Semi-Infinite Programming vol 25 (New York: Springer)
[72] Rockafellar R T 2015 Convex Analysis (Princeton, NJ: Princeton University Press)
[73] Rudin W 1987 Real and Complex Analysis 3rd edn (New York: McGraw-Hill) · Zbl 0925.00005
[74] Rust M J, Bates M and Zhuang X 2006 Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm) Nat. Methods3 793-6
[75] Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S and Unser M 2015 Quantitative evaluation of software packages for single-molecule localization microscopy Nat. Methods12 06
[76] Sage D 2019 Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software Nat. Methods16 387
[77] Schmidt R 1986 Multiple emitter location and signal parameter estimation IEEE Trans. Antennas Propag.34 276-80
[78] Soubies E, Schaub S, Radwanska A, Van Obberghen-Schilling E, Blanc-Féraud L and Aubert G 2016 A framework for multi-angle tirf microscope calibration IEEE 13th Int. Symp. on Biomedical Imaging pp 668-71
[79] Soussen C, Gribonval R, Idier J and Herzet C 2013 Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares IEEE Trans. Inform. Theory59 3158-74 · Zbl 1364.94160
[80] Soussen C, Idier J, Duan J and Brie D 2015 Homotopy based algorithms for ℓ0-regularized least-squares IEEE Trans. Signal Process.63 3301-16 · Zbl 1394.94555
[81] Tang G 2015 Resolution limits for atomic decompositions via markov-bernstein type inequalities Int. Conf. on Sampling Theory and Applications(SampTA,) pp 548-52
[82] Tang G, Bhaskar B N and Recht B 2013 Sparse recovery over continuous dictionaries-just discretize Asilomar Conf. on Signals, Systems and Computers pp 1043-7
[83] Tibshirani R 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc. B 58 267-88 · Zbl 0850.62538
[84] Toh K C and Yun S 2010 An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems Pac. J. Optim.6 615-40 · Zbl 1205.90218
[85] Tropp J A and Gilbert A C 2007 Signal recovery from random measurements via orthogonal matching pursuit IEEE Trans. Inf. Theory53 4655-66 · Zbl 1288.94022
[86] Tseng P 2001 Convergence of a block coordinate descent method for nondifferentiable minimization J. Optim. Theory Appl.109 475-94 · Zbl 1006.65062
[87] Wu T T and Lange K 2008 Coordinate descent algorithms for lasso penalized regression Ann. Appl. Stat.2 224-44 · Zbl 1137.62045
[88] Zhang B, Zerubia J and Olivo-Marin J C 2007 Gaussian approximations of fluorescence microscope point-spread function models Appl. Opt.46 1819-29
[89] Zheng C, Zhao G, Liu W, Chen Y, Zhang Z, Jin L, Xu Y, Kuang C and Liu X 2018 Three-dimensional super-resolved live cell imaging through polarized multi-angle tirf Opt. Lett.43 1423-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.