zbMATH — the first resource for mathematics

A smoothing active set method for linearly constrained non-Lipschitz nonconvex optimization. (English) Zbl 07154031
65K10 Numerical optimization and variational techniques
90C26 Nonconvex programming, global optimization
90C46 Optimality conditions and duality in mathematical programming
Full Text: DOI
[1] N. S. Aybat and G. Iyengar, A first-order smoothed penalty method for compressed sensing, SIAM J. Optim., 21 (2011), pp. 287-313. · Zbl 1219.90123
[2] M. S. Barzaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, 2nd ed., Wiley, New York, 1993.
[3] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[4] W. Bian and X. Chen, Linearly constrained non-Lipschitz optimization for image restoration, SIAM J. Imaging Sci., 8 (2015), pp. 2294-2322. · Zbl 1327.90299
[5] W. Bian and X. Chen, Optimality and complexity for constrained optimization problems with nonconvex regularization, Math. Oper. Res., 42 (2017), pp. 1063-1084. · Zbl 1386.90167
[6] J. Bolte, A. Danilidis, A. Lewis, and M. Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim., 18 (2007), pp. 556-572. · Zbl 1142.49006
[7] J. V. Burke, T. Hoheisel, and C. Kanzow, Gradient consistency for integral-convolution smoothing, Set-Valued Var. Anal., 21 (2013), pp. 359-376. · Zbl 1321.49027
[8] P. H. Calamai and J. J. Moré, Projected gradient method for linearly constrained problems, Math. Program., 39 (1987), pp. 93-116. · Zbl 0634.90064
[9] X. Chen, L. Guo, Z. Lu, and J. J. Ye, An augmented Lagrangian method for non-Lipschitz nonconvex programming, SIAM J. Numer. Anal., 55 (2017), pp. 168-193. · Zbl 1421.90119
[10] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program., 134 (2012), pp. 71-99. · Zbl 1266.90145
[11] X. Chen, L. Niu, and Y. Yuan, Optimality conditions and a smoothing trust region Newton method for nonLipschitz optimization, SIAM J. Optim., 23 (2013), pp. 1528-1552. · Zbl 1291.90238
[12] X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 3 (2010), pp. 765-790. · Zbl 1200.65031
[13] Z. Dostál and T. Kozubek, An optimal algorithm with superrelaxation for minimization of a quadratic functions subject to separable constraints with applications, Math. Program., 135 (2012), pp. 195-220. · Zbl 1259.65089
[14] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active constraints, SIAM J. Optim., 9 (1998), pp. 14-32. · Zbl 0960.90080
[15] B. Fastrich, S. Paterlini, and P. Winker, Cardinality versus q-norm constraints for index tracking, Quant. Finance, 14 (2014), pp. 2019-2032. · Zbl 1402.91689
[16] M. Fukushima, A modified Frank-Wolfe algorithm for solving the traffic assignment problem, Transp. Res. Part B Meth., 18 (1984), pp. 169-177.
[17] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization, SIAM J. Optim., 17 (2006), pp. 526-557. · Zbl 1165.90570
[18] W. W. Hager and H. Zhang, An active set algorithm for nonlinear optimization with polyhedral constraints, Sci. China Math., 59 (2016), pp. 1525-1542. · Zbl 1349.90619
[19] W. W. Hager and H. Zhang, An affine scaling method for optimization problems with polyhedral constraints, Comput. Optim. Appl., 59 (2014), pp. 163-183. · Zbl 1303.90100
[20] D. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 39 (2001), pp. 529-545.
[21] N. Keskar and A. Wächter, A limited-memory quasi-Newton algorithm for bound-constrained nonsmooth optimization, Optim. Methods Softw., 34 (2019), pp. 150-171. · Zbl 1406.49032
[22] J. Kim and H. Park, Fast nonnegative matrix factorization: An active-set-like method and comparisons, SIAM J. Sci. Comput., 33 (2011), pp. 3261-3281. · Zbl 1232.65068
[23] D. Lee and H. Seung, Algorithms for non-negative matrix factorization, Adv. Neural Inf. Process. Syst., 13 (2001), pp. 556-562.
[24] C.-J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Comput., 19 (2007), pp. 2756-2779. · Zbl 1173.90583
[25] C.-J. Lin and J. J. Moŕe, Newton’s method for large bound-constrained optimization problems, SIAM J. Optim., 9 (1999), pp. 1100-1127. · Zbl 0957.65064
[26] Y. Liu, S. Ma, Y. H. Dai, and S. Zhang, A smoothing sequential quadratic programming (SSQP) framework for a class of composite \(L_q\) minimization over polyhedron, Math. Program., 158 (2016), pp. 467-500. · Zbl 1346.90684
[27] Yu. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), pp. 127-152. · Zbl 1079.90102
[28] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965-994. · Zbl 1018.49025
[29] E. R. Panier, An active set method for solving linearly constrained nonsmooth optimization problems, Math. Program., 37 (1987), pp. 269-292. · Zbl 0641.90061
[30] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, Hyperspectral unmixing via \(L_{1/2}\) sparsity-constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., 49 (2011), pp. 4282-4297.
[31] R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer, Berlin, 1998. · Zbl 0888.49001
[32] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, MPS-SIAM Ser. Optim. 9, SIAM, Philadelphia, 2009.
[33] P. Tseng, I. M. Bomze, and W. Schachinger, A first-order interior-point for linearly constrained smooth optimization, Math. Program., 127 (2011), pp. 399-424. · Zbl 1216.49028
[34] W. Wang and M. A. Carreira-Perpinàn, Projection onto the Probability Simplex: An Efficient Algorithm with a Simple Proof, and an Application, preprint, https://arxiv.org/abs/1309.1541 (2013).
[35] W. Wang and Y. Qian, Adaptive \(L_{1/2}\) sparsity-constrained NMF with half-thresholding algorithm for hyperspectral unmixing, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8 (2015), pp. 2618-2631.
[36] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM J. Comput., 32 (2010), pp. 1832-1857. · Zbl 1215.49039
[37] Z. Wen, W. Yin, H. Zhang, and D. Goldfarb, On the convergence of an active set method for \(\ell_1\) minimization, Optim. Method Softw., 27 (2012), pp. 1127-1146. · Zbl 1244.49055
[38] M. Xu, J. J. Ye, and L. Zhang, Smoothing SQP methods for solving degenerate nonsmooth constrained optimization problems with applications to bilevel programs, SIAM J. Optim., 25 (2015), pp. 1388-1410. · Zbl 1317.65148
[39] W. Xu, X. Liu, and Y. Gong, Document clustering based on nonnegative matrix factorization, in Proceedings of the 26th International Conference on Research and Development in Information Retrieval (SIGIR), ACM, New York, 2003, pp. 267-273.
[40] Z. Yang, G. Zhou, S. Xie, S. Ding, J. M. Yang, and J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization, IEEE Trans. Image Process., 20 (2011), pp. 1112-1125. · Zbl 1372.94288
[41] C. Zhang and X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optim., 20 (2009), pp. 627-649. · Zbl 1204.65073
[42] C. Zhang, L. Jing, and N. Xiu, A new active set method for nonnegative matrix factorization, SIAM J. Sci. Comput., 36 (2014), pp. A2633-A2653.
[43] F. Zhu, Y. Wang, B. Fan, S. Xiang, and G. Meng, Spectral unmixing via data-guided sparsity, IEEE Trans. Image Process., 23 (2014), pp. 5412-5427. · Zbl 1374.94475
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.