×

Noncommutative boundaries and the ideal structure of reduced crossed products. (English) Zbl 07154925

Summary: A \(C^*\)-dynamical system is said to have the ideal separation property if every ideal in the corresponding crossed product arises from an invariant ideal in the \(C^*\)-algebra. In this paper we characterize this property for unital \(C^*\)-dynamical systems over discrete groups. To every \(C^*\)-dynamical system we associate a “twisted” partial \(C^*\)-dynamical system that encodes much of the structure of the action. This system can often be “untwisted,” for example, when the algebra is commutative or when the algebra is prime and a certain specific subgroup has vanishing Mackey obstruction. In this case, we obtain relatively simple necessary and sufficient conditions for the ideal separation property. A key idea is a notion of noncommutative boundary for a \(C^*\)-dynamical system that generalizes Furstenberg’s notion of topological boundary for a group.

MSC:

46L35 Classifications of \(C^*\)-algebras
47L65 Crossed product algebras (analytic crossed products)
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] E. M. Alfsen and F. W. Shultz, State Spaces of Operator Algebras: Basic Theory, Orientations, and \(C^*\)-Products, Birkhäuser, Boston, 2001. · Zbl 0983.46047
[2] P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. (2) 37 (1994), 161-174. · Zbl 0793.46036
[3] R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542. · Zbl 0613.46048
[4] R. J. Archbold and D. W. B. Somerset, Quasi-standard \(C^*\)-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 349-360. · Zbl 0731.46034
[5] R. J. Archbold and J. S. Spielberg, Topologically free actions and ideals in discrete \(C^*\)-dynamical systems, Proc. Edinburgh Math. Soc. (2) 37 (1994), 119-124. · Zbl 0799.46076
[6] W. B. Arveson, Subalgebras of \(C^*\)-algebras, Acta Math. 123 (1969), 141-224. · Zbl 0194.15701
[7] E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa, \(C^*\)-simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 35-71. · Zbl 1391.46071
[8] N. P. Brown and N. Ozawa, \(C^*\)-Algebras and Finite-Dimensional Approximations, Grad. Stud. in Math. 88, Amer. Math. Soc., Providence, 2008. · Zbl 1160.46001
[9] R. S. Bryder, Injective envelopes and the intersection property, preprint, arXiv:1704.02723v3 [math.OA].
[10] R. S. Bryder and M. Kennedy, Reduced twisted crossed products over \(C^*\)-simple groups, Int. Math. Res. Not. IMRN 2018, no. 6, 1638-1655. · Zbl 1415.46047
[11] M. Dokuchaev and M. Khrypchenko, Partial cohomology of groups, J. Algebra 427 (2015), 142-182. · Zbl 1323.20052
[12] G. A. Elliott, Some simple \(C^*\)-algebras constructed as crossed products with discrete outer automorphism groups, Publ. Res. Inst. Math. Sci. 16 (1980), 299-311. · Zbl 0438.46044
[13] R. Exel, Partial Dynamical Systems, Fell Bundles and Applications, Math. Surveys Monogr. 224, Amer. Math. Soc., Providence, 2017. · Zbl 1405.46003
[14] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476. · Zbl 0106.15801
[15] E. Glasner and B. Weiss, “Uniformly recurrent subgroups” in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math. 631, Amer. Math. Soc., Providence, 2015, 63-75. · Zbl 1332.37014
[16] S. Glasner, Proximal Flows, Lecture Notes in Math. 517, Springer, New York, 1976. · Zbl 0322.54017
[17] A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489. · Zbl 0083.17401
[18] M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), 773-785. · Zbl 0436.46046
[19] M. Hamana, Regular embeddings of \(C^*\)-algebras in monotone complete \(C^*\)-algebras, J. Math. Soc. Japan 33 (1981), 159-183. · Zbl 0457.46048
[20] M. Hamana, Tensor products for monotone complete \(C^*\)-algebras, I, Japan. J. Math. (N.S.) 8 (1982), 259-283. · Zbl 0507.46048
[21] M. Hamana, The centre of the regular monotone completion of a \(C^*\)-algebra, J. London Math. Soc. (2) 26 (1982), 522-530. · Zbl 0504.46042
[22] M. Hamana, Injective envelopes of \(C^*\)-dynamical systems, Tohoku Math. J. (2) 37 (1985), 463-487. · Zbl 0585.46053
[23] R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. 7 (1951). · Zbl 0042.34801
[24] M. Kalantar and M. Kennedy, Boundaries of reduced \(C^*\)-algebras of discrete groups, J. Reine Angew Math. 2017 (2017), no. 727, 247-267. · Zbl 1371.46044
[25] R. R. Kallmann, A generalization of free action, Duke Math. J. 36 (1969), 781-789.
[26] T. Kawabe, Uniformly recurrent subgroups and the ideal structure of reduced crossed products, preprint, arXiv:1701.03413v1 [math.OA].
[27] S. Kawamura and J. Tomiyama, Properties of topological dynamical systems and corresponding \(C^*\)-algebras, Tokyo J. Math. 13 (1990), 251-257. · Zbl 0724.54037
[28] M. Kennedy, An intrinsic characterization of \(C^*\)-simplicity, to appear in Ann. Sci. Éc. Norm. Supér., preprint, 2018.
[29] A. Kishimoto, Freely acting automorphisms of \(C^*\)-algebras, Yokohama Math. J. 30 (1982), 39-47. · Zbl 0518.46051
[30] B. K. Kwaśniewski and R. Meyer, Aperiodicity, topological freeness and pure outerness: From group actions to Fell bundles, Studia Math. 241 (2018), 257-302. · Zbl 1398.46057
[31] M. Mathieu and C. Ruddy, “Spectral isometries, II” in Function Spaces, Contemp. Math. 435, Amer. Math. Soc., Providence, 2007, 301-310. · Zbl 1140.47027
[32] D. Olesen and G. K. Pedersen, Application of the Connes spectrum to \(C^*\)-dynamical systems, III, J. Funct. Anal. 45 (1982), 357-390. · Zbl 0511.46064
[33] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv. Math. 78, Cambridge Univ. Press, 2002. · Zbl 1029.47003
[34] G. K. Pedersen, \(C^*\)-Algebras and Their Automorphism Groups, London Math. Soc. Monogr. 14, Academic Press, New York, 1979. · Zbl 0416.46043
[35] H. Pinedo, Partial projective representations and the partial Schur multiplier: A survey, Bol. Mat. 22 (2015), 167-175.
[36] G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Ser. 294, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1093.46001
[37] D. R. Pitts, Structure for regular inclusions, I, J. Oper. Theory 78 (2017), 357-416. · Zbl 1424.46078
[38] D. R. Pitts and V. Zarikian, Unique pseudo-expectations for \(C^*\)-inclusions, Illinois J. Math. 59 (2015), 449-483. · Zbl 1351.46056
[39] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous Trace \(C^*\)-Algebras, Math. Surveys Monogr. 60, Amer. Math. Soc., Providence, 1998. · Zbl 0922.46050
[40] K. Saito, A correction to “A structure theory in the regular \(\sigma \)-completion of \(C^*\)-algebras,” J. London Math. Soc. (2) 25 (1982), 498. · Zbl 0479.46042
[41] A. Sierakowski, The ideal structure of reduced crossed products, Muenster J. Math. 3 (2010), 237-261. · Zbl 1378.46050
[42] M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186. · Zbl 0032.16901
[43] M. Takesaki, Theory of Operator Algebras, I, Encyclopaedia Math. Sci. 124, Springer, Berlin, 2002.
[44] C. Webster and S. Winkler, The Krein-Milman theorem in operator convexity, Trans. Amer. Math. Soc. 351 (1999), 307-322. · Zbl 0908.47042
[45] D. P. Williams, Crossed Products of \(C^*\)-Algebras, Math. Surveys Monogr. 134, Amer. Math. Soc., Providence, 2007.
[46] V. Zarikian, Unique conditional expectations for abelian \(C^*\)-inclusions, J. Math. Anal. Appl. 447 (2017), 76-83. · Zbl 1402.46040
[47] V. Zarikian, Unique expectations for discrete crossed products, Ann. Funct. Anal. 10 (2019), 60-71. · Zbl 1482.47146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.