Talebi, Ali; Moslehian, Mohammad Sal; Sadeghi, Ghadir Etemadi and Kolmogorov inequalities in noncommutative probability spaces. (English) Zbl 1442.46050 Mich. Math. J. 68, No. 1, 57-69 (2019). Summary: Based on a maximal inequality-type result of I. Cuculescu [J. Multivariate Anal. 1, 17–27 (1971; Zbl 0254.60031)], we establish some noncommutative maximal inequalities such as the Hajék-Renyi and Etemadi inequalities [J. Hájek and A. Rényi, Acta Math. Acad. Sci. Hung. 6, 281–283 (1955; Zbl 0067.10701); N. Etemadi, Sankhyā, Ser. A 47, 215–221 (1985; Zbl 0581.60019)]. In addition, we present a noncommutative Kolmogorov-type inequality by showing that if \(x_1,x_2,\dots,x_n\) are successively independent self-adjoint random variables in a noncommutative probability space \((\mathfrak{M},\tau)\) such that \(\tau(x_k)=0\) and \(s_ks_{k-1}=s_{k-1}s_k \), where \(s_k=\sum_{j=1}^kx_j \), then, for any \(\lambda> 0\), there exists a projection \(e\) such that \[1-\frac{(\lambda+\max_{1\leq k\leq n}\Vert x_k\Vert)^2}{\sum_{k=1}^n\operatorname{var}(x_k)}\leq\tau(e)\leq\frac{\tau(s_n^2)}{\lambda^2}.\] As a result, we investigate the relation between the convergence of a series of independent random variables and the corresponding series of their variances. Cited in 7 Documents MSC: 46L53 Noncommutative probability and statistics 46L10 General theory of von Neumann algebras 60F99 Limit theorems in probability theory 47A30 Norms (inequalities, more than one norm, etc.) of linear operators Keywords:noncommutative maximal inequalities; noncommutative Kolmogorov-type inequality Citations:Zbl 0254.60031; Zbl 0067.10701; Zbl 0581.60019 PDF BibTeX XML Cite \textit{A. Talebi} et al., Mich. Math. J. 68, No. 1, 57--69 (2019; Zbl 1442.46050) Full Text: DOI arXiv Euclid OpenURL References: [1] C. J. K. Batty, The strong law of large numbers for states and traces of a \(W^{\ast}\)-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 2, 177-191. · Zbl 0395.60033 [2] I. Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971), 17-27. · Zbl 0254.60031 [3] N. Etemadi, On some classical results in probability theory, Sankhya, Ser. A 47 (1985), no. 2. · Zbl 0581.60019 [4] A. Gut, Probability: a graduate course, Second edition, Springer Texts Statist., Springer, New York, 2013. · Zbl 1267.60001 [5] J. Hajék and A. Renyi, Generalization of an inequality of Kolmogorov, Acta Math. Acad. Sci. Hung. 6 (1955), no. 3-4, 281-283. · Zbl 0067.10701 [6] M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities. II. Applications, Israel J. Math. 167 (2008), 227-282. · Zbl 1217.46043 [7] M. Junge and Q. Zeng, Noncommutative Bennett and Rosenthal inequalities, Ann. Probab. 41 (2013), no. 6, 4287-4316. [8] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. · Zbl 0292.46030 [9] N. Randrianantoanina, A weak type inequality for noncommutative martingales and applications, Proc. Lond. Math. Soc. 91 (2005), no. 3, 509-544. · Zbl 1091.46040 [10] Gh. Sadeghi and M. S. Moslehian, Noncommutative martingale concentration inequalities, Illinois J. Math. 58 (2014), no. 2, 561-575. · Zbl 1332.46063 [11] Gh. Sadeghi and M. S. Moslehian, Inequalities for sums of random variables in noncommutative probability spaces, Rocky Mountain J. Math. 46 (2016), no. 1, 309-323. · Zbl 1357.46057 [12] A. Talebi, M. S. Moslehian, and Gh. Sadeghi, Noncommutative Blackwell-Ross martingale inequality, Infin. Dimens. Anal. Quantum Probab. Relat. Top. (to appear), arXiv:1705.07122. · Zbl 1395.46050 [13] Q. Xu, Operator spaces and noncommutative \(L_p\)-spaces, Lectures in the Summer School on Banach Spaces and Operator Spaces, Nankai University, China, 2007. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.