Hammerlindl, Andy; Potrie, Rafael Classification of systems with center-stable tori. (English) Zbl 1440.37039 Mich. Math. J. 68, No. 1, 147-166 (2019). Let \(f\) be a partially hyperbolic diffeomorphism of a closed oriented 3-manifold \(M\) with a splitting \(E^s\oplus E^c\oplus E^u\) of the tangent bundle \(TM\). A center-stable (center-unstable) torus is an embebbed torus tangent to \(E^s\oplus E^c\) (respectively, to \(E^c\oplus E^u\)). It is known that there exists a finite and pairwise disjoint collection \(T_1,\dots,T_n\) of all center-stable and center-unstable tori, such that any connected component \(U\) of \(M\setminus(T_1\cup\dots\cup T_n)\) is homeomorphic to \(\mathbf{T}^2\times(0,1)\), and for any such component \(U\) there exists a \(k\geq 1\) such that \(f^k\) maps \(U\) to itself.The authors show that for any such component \(U\) there is an embedding \(h:\;U\to\mathbf{T}^2\times\mathbf{R}\) such that the homeomorphism \(h\circ f^k\circ h^{-1}\) has the form \[ h\circ f^k\circ h^{-1}(v,x)=(A(v),\phi(v,x)), \] where \(A:\mathbf{T}^2\times\mathbf{T}^2\) is a hyperbolic toral automorphism and \(\phi:\;h(U)\to\mathbf{R}\) is continuous. Reviewer: Sergei Yu. Pilyugin (St. Petersburg) Cited in 3 Documents MSC: 37D30 Partially hyperbolic systems and dominated splittings 37D10 Invariant manifold theory for dynamical systems 37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems Keywords:partial hyperbolicity; embedded torus PDF BibTeX XML Cite \textit{A. Hammerlindl} and \textit{R. Potrie}, Mich. Math. J. 68, No. 1, 147--166 (2019; Zbl 1440.37039) Full Text: DOI arXiv Euclid OpenURL References: [1] [BBI04] M. Brin, D. Burago, and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern dynamical systems and applications, pp. 307-312, 2004. · Zbl 1147.37321 [2] [BBI09] M. Brin, D. Burago, and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn. 3 (2009), no. 1, 1-11. · Zbl 1190.37026 [3] [BI08] D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups, J. Mod. Dyn. 2 (2008), no. 4, 541-580. · Zbl 1157.37006 [4] [Fra70] J. Franks, Anosov diffeomorphisms, Global analysis: proceedings of the symposia in pure mathematics, 14, pp. 61-93, 1970. [5] [Ham131] A. Hammerlindl, Leaf conjugacies on the torus, Ergodic Theory Dynam. Systems 33 (2013), no. 3, 896-933. · Zbl 1390.37051 [6] [Ham132] A. Hammerlindl, Partial hyperbolicity on 3-dimensional nilmanifolds, Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3641-3669. · Zbl 1311.37019 [7] [Ham181] A. Hammerlindl, Constructing center-stable tori, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 3, 713-728. · Zbl 1417.37115 [8] [Ham182] A. Hammerlindl, Properties of compact center-stable submanifolds, Math. Z. 288 (2018), no. 3-4, 741-755. · Zbl 1392.37031 [9] [HP14] A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 853-875. · Zbl 1309.37033 [10] [HP15] A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol. 8 (2015), no. 3, 842-870. · Zbl 1364.37049 [11] [HP18] A. Hammerlindl and R. Potrie, Partial hyperbolicity and classification: a survey, Ergodic Theory Dynam. Systems 38 (2018), no. 2, 401-443. · Zbl 1393.37038 [12] [Pot15] R. Potrie, Partial hyperbolicity and foliations in \(\mathbb{T}^3 \), J. Mod. Dyn. 9 (2015), 81-121. · Zbl 1352.37055 [13] [Pot12] R. Potrie, Partial hyperbolicity and attracting regions in 3-dimensional manifolds, PhD thesis, 2012, arXiv:1207.1822. [14] [PS07] E. R. Pujals and M. Sambarino, Integrability on codimension one dominated splitting, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 1, 1-19. · Zbl 1128.37022 [15] [RHRHU11] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn. 5 (2011), no. 1, 185-202. · Zbl 1221.37056 [16] [RHRHU16] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, A non-dynamically coherent example on \(\mathbb{T}^3 \), Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 4, 1023-1032. · Zbl 1380.37067 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.