×

zbMATH — the first resource for mathematics

A survey on kriging-based infill algorithms for multiobjective simulation optimization. (English) Zbl 07157826
Summary: This article surveys the most relevant kriging-based infill algorithms for multiobjective simulation optimization. These algorithms perform a sequential search of so-called infill points, used to update the kriging metamodel at each iteration. An infill criterion helps to balance local exploitation and global exploration during this search by using the information provided by the kriging metamodels. Most research has been done on algorithms for deterministic problem settings; only very recently, algorithms for noisy simulation outputs have been proposed. Yet, none of these algorithms so far incorporates an effective way to deal with heterogeneous noise, which remains a major challenge for future research.
MSC:
90B Operations research and management science
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, A.; Jain, L. C.; Goldberg, R., Evolutionary Multiobjective Optimization: Theoretical Advances and Applications (2005), Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. Secaucus, NJ, USA · Zbl 1064.90001
[2] Ankenman, B.; Nelson, B. L.; Staum, J., Stochastic kriging for simulation metamodeling, Oper. Res., 58, 371-382 (2010) · Zbl 1342.62134
[3] Auer, P., Using confidence bounds for exploitation-exploration trade-offs, J. Mach. Learn. Res., 3, Nov, 397-422 (2002) · Zbl 1084.68543
[4] Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E., Hypervolume-based multiobjective optimization: theoretical foundations and practical implications, Theoret. Comput. Sci., 425, 75-103 (2012) · Zbl 1242.90205
[5] Bachoc, F., Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification, Comput. Stat. Data Anal., 66, 55-69 (2013) · Zbl 06958972
[6] Bader, J.; Zitzler, E., Hype: an algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., 19, 1, 45-76 (2011)
[7] Balling, R., The maximin fitness function; multi-objective city and regional planning, International Conference on Evolutionary Multi-Criterion Optimization, 1-15 (2003), Springer · Zbl 1036.90564
[8] Barber, D., Bayesian Reasoning and Machine Learning (2012), Cambridge University Press · Zbl 1267.68001
[9] Basseur, M.; Zitzler, E., A preliminary study on handling uncertainty in indicator-based multiobjective optimization, Applications of Evolutionary Computing, 727-739 (2006), Springer Berlin Heidelberg
[10] Bautista, D. C.T., A sequential design for approximating the pareto front using the expected pareto improvement function (2009), The Ohio State University
[11] Boesel, J.; Nelson, B. L.; Kim, S.-H., Using ranking and selection to “clean up” after simulation optimization, Oper. Res., 51, 5, 814-825 (2003) · Zbl 1165.90477
[12] Bonnel, H.; Collonge, J., Stochastic optimization over a pareto set associated with a stochastic multi-objective optimization problem, J. Optim. Theory Appl., 162, 2, 405-427 (2014) · Zbl 1323.90044
[13] Bonnel, H.; Collonge, J., Optimization over the pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case, J. Global Optim., 62, 3, 481-505 (2015) · Zbl 1357.90128
[14] Box, G. E.; Draper, N. R., Empirical Model-building and Response Surfaces, 424 (1987), Wiley New York · Zbl 0614.62104
[15] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge university press · Zbl 1058.90049
[16] Branke, J.; Corrente, S.; Greco, S.; Gutjahr, W., Efficient pairwise preference elicitation allowing for indifference, Comput. Oper. Res., 88, 175-186 (2017) · Zbl 1391.90341
[17] Branke, J.; Deb, K.; Dierolf, H.; Osswald, M., Finding knees in multi-objective optimization, International conference on parallel problem solving from nature, 722-731 (2004), Springer
[18] Branke, J.; Zhang, W.; Tao, Y., Multio-bjective ranking and selection based on hypervolume, Winter Simulation Conference (WSC), 2016, 859-870 (2016), IEEE
[19] Brochu, E.; Cora, V. M.; De Freitas, N., A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, arXiv preprint arXiv:1012.2599 (2010)
[20] Broomhead, D. S.; Lowe, D., Radial basis functions, multi-variable functional interpolation and adaptive networks, Technical Report (1988), Royal Signals and Radar Establishment Malvern (United Kingdom) · Zbl 0657.68085
[21] Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B., A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20, 5, 773-791 (2016)
[22] Chevalier, C.; Bect, J.; Ginsbourger, D.; Vazquez, E.; Picheny, V.; Richet, Y., Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, Technometrics, 56, 4, 455-465 (2014)
[23] Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K., A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization, IEEE Trans. Evol. Comput. (2016)
[24] Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K., A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms, Soft Comput., 1-30 (2017)
[25] Coello, C. A.C.; Sierra, M. R., A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm, Mexican International Conference on Artificial Intelligence, 688-697 (2004), Springer
[26] Couckuyt, I.; Deschrijver, D.; Dhaene, T., Towards efficient multiobjective optimization: multiobjective statistical criterions, Evolutionary Computation (CEC), 2012 IEEE Congress on, 1-8 (2012), IEEE
[27] Couckuyt, I.; Deschrijver, D.; Dhaene, T., Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization, J. Global Optim., 60, 3, 575-594 (2014) · Zbl 1303.90093
[28] Cressie, N., Statistics for Spatial Data (1993), John Wiley & Sons: John Wiley & Sons New York
[29] Das, I.; Dennis, J. E., A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems, Struct. Optim., 14, 1, 63-69 (1997)
[30] Davins-Valldaura, J.; Moussaoui, S.; Pita-Gil, G.; Plestan, F., ParEGO extensions for multi-objective optimization of expensive evaluation functions, J. Global Optim., 67, 1-2, 79-96 (2017) · Zbl 1359.90127
[31] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[32] Dellino, G.; Lino, P.; Meloni, C.; Rizzo, A., Enhanced Evolutionary Algorithms for Multidisciplinary Design Optimization: A Control Engineering Perspective, 39-76 (2007), Springer: Springer Berlin, Heidelberg
[33] Dellino, G.; Lino, P.; Meloni, C.; Rizzo, A., Kriging metamodel management in the design optimization of a CNG injection system, Math. Comput. Simul., 79, 8, 2345-2360 (2009) · Zbl 1166.65343
[34] Dellino, G.; Lino, P.; Meloni, C.; Rizzo, A.; Bonomo, C.; Fortuna, L.; Giannon, P.; Graziani, S., Simulation-optimisation in modelling ionic polymer-metal composites actuators, Int. J. Model. Identif. Control, 17, 1, 8-18 (2012)
[35] Diaz-Manriquez, A.; Toscano, G.; Barron-Zambrano, J. H.; Tello-Leal, E., A review of surrogate assisted multiobjective evolutionary algorithms, Intell. Neurosci., 2016, 19 (2016)
[36] Ebden, M., Gaussian processes: A Quick introduction, ArXiv e-prints (2015)
[37] Emmerich, M. T.; Deutz, A. H., A tutorial on multiobjective optimization: fundamentals and evolutionary methods, Nat. Comput., 17, 3, 585-609 (2018)
[38] Emmerich, M. T.; Deutz, A. H.; Klinkenberg, J. W., Hypervolume-based expected improvement: Monotonicity properties and exact computation, Evolutionary Computation (CEC), 2011 IEEE Congress on, 2147-2154 (2011), IEEE
[39] Emmerich, M. T.; Giannakoglou, K. C.; Naujoks, B., Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels, IEEE Trans. Evol. Comput., 10, 4, 421-439 (2006)
[40] Feldman, G.; Hunter, S. R.; Pasupathy, R., Multi-objective simulation optimization on finite sets: optimal allocation via scalarization, Proceedings of the 2015 Winter Simulation Conference, 3610-3621 (2015), IEEE Press
[41] Feliot, P.; Bect, J.; Vazquez, E., A bayesian approach to constrained single-and multi-objective optimization, J. Global Optim., 67, 1-2, 97-133 (2017) · Zbl 1390.90441
[42] Fieldsend, J. E.; Everson, R. M., Multi-objective optimisation in the presence of uncertainty, 2005 IEEE Congress on Evolutionary Computation, 1, 243-250 (2005)
[43] Fieldsend, J. E.; Everson, R. M., The rolling tide evolutionary algorithm: a multiobjective optimizer for noisy optimization problems, IEEE Trans. Evol. Comput., 19, 1, 103-117 (2015)
[44] da Fonseca, V. G.; Fonseca, C. M.; Hall, A. O., Inferential performance assessment of stochastic optimisers and the attainment function, International Conference on Evolutionary Multi-Criterion Optimization, 213-225 (2001), Springer
[45] Forrester, A.; Sobester, A.; Keane, A., Engineering Design via Surrogate Modelling: APractical Guide (2008), John Wiley & Sons: John Wiley & Sons Chichester
[46] Forrester, A. I.; Keane, A. J., Recent advances in surrogate-based optimization, Progr. Aerosp. Sci., 45, 1, 50-79 (2009)
[47] Forrester, A. I.; Keane, A. J.; Bressloff, N. W., Design and analysis of “noisy” computer experiments, AIAA J., 44, 10, 2331-2339 (2006)
[48] Frazier, P.; Powell, W.; Dayanik, S., The knowledge-gradient policy for correlated normal beliefs, INFORMS J. Comput., 21, 4, 599-613 (2009) · Zbl 1243.91014
[49] Frazier, P. I., A tutorial on Bayesian optimization, arXiv preprint arXiv:1807.02811 (2018)
[50] Fricker, T. E.; Oakley, J. E.; Urban, N. M., Multivariate gaussian process emulators with nonseparable covariance structures, Technometrics, 55, 1, 47-56 (2013)
[51] Fu, M. C., 2014. Handbook of Simulation Optimization.
[52] Giagkiozis, I.; Fleming, P. J., Methods for multi-objective optimization: an analysis, Inf. Sci., 293, 338-350 (2015) · Zbl 1355.90090
[53] Gong, D.; na Qin, N.; yan Sun, X., Evolutionary algorithms for multi-objective optimization problems with interval parameters, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 411-420 (2010)
[54] Gramacy, R. B.; Lee, H. K., Cases for the nugget in modeling computer experiments, Stat. Comput., 22, 3, 713-722 (2012) · Zbl 1252.62098
[55] Gutjahr, W. J.; Pichler, A., Stochastic multi-objective optimization: a survey on non-scalarizing methods, Ann. Oper. Res., 236, 2, 475-499 (2016) · Zbl 1331.90045
[56] Hakanen, J.; Knowles, J. D., On using decision maker preferences with parego, International Conference on Evolutionary Multi-Criterion Optimization, 282-297 (2017), Springer
[57] Hansen, M. P.; Jaszkiewicz, A., Evaluating the quality of approximations to the non-dominated set (1998)
[58] Henkenjohann, N.; Göbel, R.; Kleiner, M.; Kunert, J., An adaptive sequential procedure for efficient optimization of the sheet metal spinning process, Qual. Reliab. Eng. Int., 21, 5, 439-455 (2005)
[59] Henkenjohann, N.; Kunert, J.; a, a., An efficient sequential optimization approach based on the multivariate expected improvement criterion, Qual. Eng., 19, 4, 267-280 (2007)
[60] Hennig, P.; Schuler, C. J., Entropy search for information-efficient global optimization, J. Mach. Learn. Res., 13, Jun, 1809-1837 (2012) · Zbl 1432.65073
[61] Hernández L., D.; Hernandez-Lobato, J.; Shah, A.; Adams, R., Predictive entropy search for multi-objective bayesian optimization, International Conference on Machine Learning, 1492-1501 (2016)
[62] Hernández L., J. M.; Hoffman, M. W.; Ghahramani, Z., Predictive entropy search for efficient global optimization of black-box functions, Advances in neural information processing systems, 918-926 (2014)
[63] Hoffman, M. D.; Brochu, E.; de Freitas, N., Portfolio Allocation for Bayesian Optimization, Technical Report (2011)
[64] Horn, D.; Dagge, M.; Sun, X.; Bischl, B., First investigations on noisy model-based multi-objective optimization, International Conference on Evolutionary Multi-Criterion Optimization, 298-313 (2017), Springer
[65] Huband, S.; Hingston, P.; Barone, L.; While, L., A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput., 10, 5, 477-506 (2006)
[66] Hunter, S. R.; Applegate, E. A.; Arora, V.; Chong, B.; Cooper, K.; Rincón-Guevara, O.; Vivas-Valencia, C., An introduction to multiobjective simulation optimization, ACM Trans. Model. Comput. Simul., 29, 1, 7:1-7:36 (2019)
[67] Hupkens, I.; Emmerich, M.; Deutz, A., Faster computation of expected hypervolume improvement, arXiv preprint arXiv:1408.7114 (2014)
[68] Jalali, H.; Van Nieuwenhuyse, I.; Picheny, V., Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise, Eur. J. Oper. Res. (2017) · Zbl 1403.90553
[69] Jeong, S.; Obayashi, S., Efficient global optimization (ego) for multi-objective problem and data mining, Evolutionary Computation, 2005. The 2005 IEEE Congress on, 3, 2138-2145 (2005), IEEE
[70] Jin, Y.; Branke, J., Evolutionary optimization in uncertain environments-a survey, IEEE Trans. Evol. Comput., 9, 3, 303-317 (2005)
[71] Jones, D. R., A taxonomy of global optimization methods based on response surfaces, J. Global Optim., 21, 4, 345-383 (2001) · Zbl 1172.90492
[72] Jones, D. R.; Schonlau, M.; Welch, W. J., Efficient global optimization of expensive black-box functions, J. Global Optim., 13, 455-492 (1998) · Zbl 0917.90270
[73] Keane, A. J., Statistical improvement criteria for use in multiobjective design optimization, AIAA J., 44, 4, 879-891 (2006)
[74] Kleijnen, J. P.; Mehdad, E., Multivariate versus univariate kriging metamodels for multi-response simulation models, Eur. J. Oper. Res., 236, 2, 573-582 (2014) · Zbl 1317.62048
[75] Kleijnen, J. P.C., Design and Analysis of Simulation Experiments (2015), Springer: Springer NY · Zbl 1321.62006
[76] Knowles, J., ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Trans. Evol. Comput., 10, 1, 50-66 (2006)
[77] Knowles, J. D.; Corne, D.; Reynolds, A. P., Noisy multiobjective optimization on a budget of 250 evaluations, EMO, 36-50 (2009), Springer
[78] Koch, P.; Wagner, T.; Emmerich, M. T.; Bäck, T.; Konen, W., Efficient multi-criteria optimization on noisy machine learning problems, Appl. Soft Comput., 29, 357-370 (2015)
[79] Krige, D. G., A statistical approach to some basic mine valuation problems on the witwatersrand, J. Southern African Inst. Min.Metallurgy, 52, 6, 119-139 (1951)
[80] Law, A. M., Simulation Modeling and Analysis (2015), McGraw-Hill, New York
[81] Lázaro-Gredilla, M.; Titsias, M. K., Variational heteroscedastic gaussian process regression, Proceedings of the 28th International Conference on International Conference on Machine Learning. USA, 841-848 (2011)
[82] Lee, L. H.; Chew, E. P.; Teng, S.; Goldsman, D., Finding the non-dominated pareto set for multi-objective simulation models, IIE Trans., 42, 9, 656-674 (2010)
[83] Lemieux, C., Monte Carlo and Quasi-Monte Carlo Sampling (2009), Springer Science & Business Media · Zbl 1269.65001
[84] Li, G.; Li, M.; Azarm, S.; Al Hashimi, S.; Al Ameri, T.; Al Qasas, N., Improving multi-objective genetic algorithms with adaptive design of experiments and online metamodeling, Struct. Multidiscip. Optim., 37, 5, 447-461 (2009)
[85] Li, H.; Lee, L. H.; Chew, E. P.; Lendermann, P., MO-COMPASS: a fast convergent search algorithm for multi-objective discrete optimization via simulation, IIE Trans., 47, 11, 1153-1169 (2015)
[86] Li, M.; Li, G.; Azarm, S., A kriging metamodel assisted multi-objective genetic algorithm for design optimization, J. Mech. Des., 130, 3, 031401 (2008)
[87] Liu, W.; Zhang, Q.; Tsang, E.; Liu, C.; Virginas, B., On the performance of metamodel assisted moea/d, International Symposium on Intelligence Computation and Applications, 547-557 (2007), Springer
[88] MacKay, D. J., Introduction to gaussian processes, NATO ASI Series F Comput. Syst. Sci., 168, 133-166 (1998)
[89] Marler, R. T.; Arora, J. S., Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26, 6, 369-395 (2004) · Zbl 1243.90199
[90] Martinez F., J.; Herrero P., D., Kriging-based infill sampling criterion for constraint handling in multi-objective optimization, J. Global Optim., 64, 1, 97-115 (2016) · Zbl 1339.90306
[91] Matheron, G., Principles of geostatistics, Econ. Geol., 58, 8, 1246-1266 (1963)
[92] Meckesheimer, M.; Booker, A. J.; Barton, R. R.; Simpson, T. W., Computationally inexpensive metamodel assessment strategies, AIAA J., 40, 10, 2053-2060 (2002)
[93] Miettinen, K., 1999. Nonlinear multiobjective optimization, volume 12 of international series in operations research and management science.
[94] Miettinen, K.; Mäkelä, M. M., On scalarizing functions in multiobjective optimization, OR Spectrum, 24, 2, 193-213 (2002) · Zbl 1040.90037
[95] Mockus, J., Bayesian Approach to Global Optimization: Theory and Applications, 37 (2012), Springer Science & Business Media
[96] Parr, J. M.; Forrester, A. I.; Keane, A. J.; Holden, C. M., Enhancing infill sampling criteria for surrogate-based constrained optimization, J. Comput. Methods Sci.Eng., 12, 1, 2, 25-45 (2012) · Zbl 1250.90089
[97] Pedro, L. R.; Takahashi, R. H., Decision-maker preference modeling in interactive multiobjective optimization, International Conference on Evolutionary Multi-Criterion Optimization, 811-824 (2013), Springer
[98] Picheny, V., Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction, Stat. Comput., 25, 6, 1265-1280 (2015) · Zbl 1331.90102
[99] Picheny, V.; Wagner, T.; Ginsbourger, D., A benchmark of kriging-based infill criteria for noisy optimization, Struct. Multidiscip. Optim., 48, 3, 607-626 (2013)
[100] Ponweiser, W.; Wagner, T.; Biermann, D.; Vincze, M., Multiobjective optimization on a limited budget of evaluations using model-assisted\mathcalS-metric selection, International Conference on Parallel Problem Solving from Nature, 784-794 (2008), Springer
[101] Ponweiser, W.; Wagner, T.; Vincze, M., Clustered multiple generalized expected improvement: a novel infill sampling criterion for surrogate models, Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, 3515-3522 (2008), IEEE
[102] Rasmussen, C. E., Gaussian Processes for Machine Learning (2006), Citeseer · Zbl 1177.68165
[103] Riquelme, N.; Von Lücken, C.; Baran, B., Performance metrics in multi-objective optimization, Latin American Computing Conference (CLEI), 2015, 1-11 (2015), IEEE
[104] Rubinstein, R. Y.; Kroese, D. P., Simulation and the Monte Carlo Method (2016), John Wiley & Sons · Zbl 1352.68002
[105] Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P., Design and analysis of computer experiments, Stat. Sci., 409-423 (1989) · Zbl 0955.62619
[106] Santner, T. J.; Williams, B. J.; Notz, W. I., The Design and Analysis of Computer Experiments (2013), Springer Science & Business Media
[107] Shimoyama, K.; Sato, K.; Jeong, S.; Obayashi, S., Updating kriging surrogate models based on the hypervolume indicator in multi-objective optimization, J. Mech. Des., 135, 9, 094503 (2013)
[108] Singh, P.; Couckuyt, I.; Ferranti, F.; Dhaene, T., A constrained multi-objective surrogate-based optimization algorithm, 2014 IEEE Congress on Evolutionary Computation (CEC), 3080-3087 (2014)
[109] Svenson, J.; Santner, T., Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models, Comput. Stat. Data Anal., 94, 250-264 (2016) · Zbl 06918665
[110] Svenson, J. D., Computer experiments: Multiobjective optimization and sensitivity analysis (2011), The Ohio State University
[111] Syberfeldt, A.; Ng, A.; John, R. I.; Moore, P., Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling, Eur. J. Oper. Res., 204, 3, 533-544 (2010) · Zbl 1181.90155
[112] Tabatabaei, M.; Hakanen, J.; Hartikainen, M.; Miettinen, K.; Sindhya, K., A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods, Struct. Multidiscip. Optim., 52, 1, 1-25 (2015)
[113] Trautmann, H.; Mehnen, J.; Naujoks, B., Pareto-dominance in noisy environments, Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, 3119-3126 (2009), IEEE Press: IEEE Press Piscataway, NJ, USA
[114] Ulmer, H.; Streichert, F.; Zell, A., Evolution strategies assisted by Gaussian processes with improved preselection criterion, Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, 1, 692-699 (2003), IEEE
[115] Van Beers, W. C.; Kleijnen, J. P.C., Kriging for interpolation in random simulation, J. Oper. Res. Soc., 54, 3, 255-262 (2003) · Zbl 1171.65305
[116] Vapnik, V., The Nature of Statistical Learning Theory (2013), Springer science & business media · Zbl 0934.62009
[117] Villemonteix, J.; Vazquez, E.; Walter, E., An informational approach to the global optimization of expensive-to-evaluate functions, J. Global Optim., 44, 4, 509-534 (2009) · Zbl 1180.90253
[118] Voß, T.; Trautmann, H.; Igel, C., New uncertainty handling strategies in multi-objective evolutionary optimization, Parallel Problem Solving from Nature, PPSN XI, 260-269 (2010), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg
[119] Voutchkov, I.; Keane, A., Multi-objective optimization using surrogates, Computational Intelligence in Optimization, 155-175 (2010), Springer · Zbl 1200.90151
[120] Wagner, T.; Emmerich, M.; Deutz, A.; Ponweiser, W., On expected-improvement criteria for model-based multi-objective optimization, Parallel Problem Solving from Nature, PPSN XI, 718-727 (2010)
[121] Wang, G. G.; Shan, S., Review of metamodeling techniques in support of engineering design optimization, J. Mech. Des., 129, 4, 370-380 (2007)
[122] Yin, J.; Ng, S.; Ng, K., Kriging metamodel with modified nugget-effect: the heteroscedastic variance case, Comput. Ind. Eng., 61, 760-777 (2011)
[123] Zaefferer, M.; Bartz-Beielstein, T.; Naujoks, B.; Wagner, T.; Emmerich, M., A case study on multi-criteria optimization of an event detection software under limited budgets, International Conference on Evolutionary Multi-Criterion Optimization, 756-770 (2013), Springer
[124] Zhan, D.; Cheng, Y.; Liu, J., Expected improvement matrix-based infill criteria for expensive multiobjective optimization, IEEE Trans. Evol. Comput. (2017)
[125] Zhang, Q.; Li, H., MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[126] Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B., Expensive multiobjective optimization by moea/d with gaussian process model, IEEE Trans. Evol. Comput., 14, 3, 456-474 (2010)
[127] Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-Z.; Suganthan, P. N.; Zhang, Q., Multiobjective evolutionary algorithms: a survey of the state of the art, Swarm Evol. Comput., 1, 1, 32-49 (2011)
[128] Zitzler, E.; Brockhoff, D.; Thiele, L., The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration, Evolutionary multi-criterion optimization, 862-876 (2007), Springer
[129] Zitzler, E.; Knowles, J.; Thiele, L., Quality assessment of pareto set approximations, Multiobjective Optim., 373-404 (2008)
[130] Zitzler, E.; Künzli, S., Indicator-based selection in multiobjective search, International Conference on Parallel Problem Solving from Nature, 832-842 (2004), Springer
[131] Zitzler, E.; Laumanns, M.; Thiele, L.; Fonseca, C. M.; da Fonseca, V. G., Why quality assessment of multiobjective optimizers is difficult, Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, 666-674 (2002), Morgan Kaufmann Publishers Inc.
[132] Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; Da Fonseca, V. G., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput., 7, 2, 117-132 (2003)
[133] Zuluaga, M.; Krause, A.; Püschel, M., ε-Pal: an active learning approach to the multi-objective optimization problem, The J. Mach. Learn. Res., 17, 1, 3619-3650 (2016)
[134] Zuluaga, M.; Sergent, G.; Krause, A.; Püschel, M., Active learning for multi-objective optimization, International Conference on Machine Learning, 462-470 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.