×

zbMATH — the first resource for mathematics

A Krylov semi-implicit discontinuous Galerkin method for the computation of ground and excited states in Bose-Einstein condensates. (English) Zbl 1459.65192
Summary: Numerical computations of ground and excited states of Bose-Einstein condensates (BECs) require high spatial resolution due to the presence of the multiscale structures and boundary layers and interior layers in the solution. In this paper, a new discontinuous Galerkin (DG) method is presented for the computation of ground and excited states of BECs. For the spatial discretization, the direct discontinuous Galerkin (DDG) method is applied by using the normalized gradient flow. For the time discretization, we integrate the ordinary differential equations (ODEs) which is obtained by linearizing the interaction term. To evaluate the matrix exponential operator efficiently, we apply the Krylov subspace approximations to the matrix exponential operator. Numerical examples with different potentials are reported to demonstrate the validity and effectiveness of the semi-implicit DG method.
MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Software:
GPELab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] (Griffin, A.; Snoke, D. W.; Stringari, Bose-Einstein Condensation (1995), Cambridge University Press)
[2] Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269, 198-201 (1995)
[3] Davis, K. B.; Mewes, M.-O.; Andrews, M. R.; van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75, 3969-3973 (1995)
[4] Anglin, J. R.; Ketterle, W., Bose-Einstein condensation of atomic gases, Nature, 416, 211-218 (2002)
[5] Dalfovo, F.; Giorgini, S.; Pitaevskii, L. P.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463-512 (1999)
[6] Baym, G.; Pethick, C. J., Ground-state properties of magnetically trapped Bose-condensed rubidium gas, Phys. Rev. Lett., 76, 6-9 (1996)
[7] Cipolatti, R.; Gondara, J. L.; Trallero-Giner, C., Bose-einstein condensates in optical lattices: mathematical analysis and analytical approximate formulae, Physica D, 241, 755-763 (2012) · Zbl 1375.82011
[8] Dum, R.; Cirac, J. I.; Lewenstein, M.; Zoller, P., Creation of dark solitons and vortices in Bose-Einstein condensates, Phys. Rev. Lett., 80, 2972-2975 (1998)
[9] Zhang, P.; Chan, C. K.; Li, X.-G.; Zhao, X. G., Dynamics of spin-2 Bose condensate driven by external magnetic fields, Phys. Rev. A, 66, 043606 (2002)
[10] Zhang, P.; Chan, C. K.; Li, X.-G.; Zhao, X. G., Dynamics of a two-component atomic Bose-Einstein condensate, J. Phys. B: At Mol. Opt. Phys., 35, 4647-4656 (2002)
[11] Caliari, M.; Ostermann, A.; Rainer, S.; Thalhammer, M., A minimisation approach for computing the ground state of Gross-Pitaevskii systems, J. Comput. Phys., 228, 2, 349-360 (2009) · Zbl 1159.82311
[12] Danaila, I.; Hecht, F., A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates, J. Comput. Phys., 229, 19, 6946-6960 (2010) · Zbl 1198.82035
[13] Dion, C. M.; Cancés, E., Ground state of the time-independent Gross-Pitaevskii equation, Comput. Phys. Commun., 177, 10, 787-798 (2007) · Zbl 1196.81017
[14] Bao, W.; Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25, 1674 (2004) · Zbl 1061.82025
[15] Lehtovaara, L.; Toivanen, J.; Eloranta, J., Solution of time-independent Schrödinger equation by the imaginary time propagation method, J. Comput. Phys., 221, 1, 148-157 (2007) · Zbl 1110.65096
[16] Antoine, X.; Duboscq, R., Robust and efficient preconditioned Krylov spectral solvers for puting the ground states of fast rotating and strongly interacting Bose-Einstein condensates, J. Comput. Phys., 258, 1, 509-523 (2014) · Zbl 1349.82027
[17] Bao, W.; Chern, I.-L.; Lim, F. Y., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219, 836-854 (2006) · Zbl 1330.82031
[18] Zeng, R.; Zhang, Y., Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Commun., 180, 854-860 (2009) · Zbl 1198.82007
[19] Bao, W.; Li, X.-G., An efficient and stable numerical method for Maxwell-Dirac system, J. Comput. Phys., 199, 663-687 (2004) · Zbl 1056.81080
[20] Bao, W.; Chai, M.-H., A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems, Commun. Comput. Phys., 4, 135-160 (2008) · Zbl 1364.81015
[21] Hua, D.; Li, X.-G.; Zhu, J., A mass conserved splitting method for the nonlinear Schrődinger equation, Adv. Differ. Equ., 2012, 2012-2085 (2012)
[22] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382-399 (2013) · Zbl 1349.65347
[23] Aftalion, A.; Danaila, I., Three-dimensional vortex configurations in a rotating Bose-Einstein condensate, Phys. Rev. A, 68, 023603 (2003)
[24] Farhat, C.; Toivanen, J., A hybrid discontinuous Galerkin method for computing the ground state solution of Bose-Einstein condensates, J. Comput. Phys., 231, 4709-4722 (2012) · Zbl 1250.81040
[25] Cerimele, M. M.; Chiofalo, M. L.; Pistella, F.; Succi, S.; Tosi, M. P., Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates, Phys. Rev. E, 62, 1382 (2000)
[26] Chiofalo, M. L.; Succi, S.; Tosi, M. P., Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62, 7438 (2000)
[27] Schneider, B. I.; Feder, D. L., Numerical approach to the ground and excited states of a Bose-Einstein condensated gas confined in a completely anisotropic trap, Phys. Rev. A, 59, 2232 (1999)
[28] Palpacelli, S.; Succi, S.; Spigler, R., Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme, Phys. Rev. E, 76, 036712 (2007)
[29] Antoine, X.; Bao, W.; Besse, C., Computational methods for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184, 2621-2633 (2013) · Zbl 1344.35130
[30] Xu, Y.; Shu, C. W., Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205, 72-97 (2005) · Zbl 1072.65130
[31] Zhang, R.; Yu, X.; Feng, T., Numerical solution of coupled nonlinear Schrődinger equation by direct discontinuous Galerkin method, Chin. Phys. B., 21, 030202 (2012)
[32] Li, X. G.; Zhu, J.; Zhang, R. P.; Cao, S. S., A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation, J. Comput. Phys., 275, 363-376 (2014) · Zbl 1349.65457
[33] Liu, H.; Yan, J., The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys., 3, 541-564 (2010) · Zbl 1364.65200
[34] Chen, S.; Zhang, Y., Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods, J. Comput. Phy., 230, 4336-4352 (2011) · Zbl 1416.65341
[35] Gallopoulos, E.; Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13, 5, 1236-1264 (1992) · Zbl 0757.65101
[36] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 1, 209-228 (1992) · Zbl 0749.65030
[37] Zhang, R.; Yu, X.; Zhu, J.; Loula, A. F.D.; Cui, X., Weighted interior penalty method with semi-implicit integration factor method for non-equilibrium radiation diffusion equation, Commun. Comput. Phys., 14, 1287-1303 (2013) · Zbl 1373.76110
[38] Zhang, R.; Yu, X.; Zhu, J.; Loula, A. F.D., Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation, Appl. Math. Model., 38, 1612-1621 (2014) · Zbl 1427.65272
[39] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 5, 1911-1925 (1997) · Zbl 0888.65032
[40] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM · Zbl 1153.65112
[41] Nie, Q.; Zhang, Y.-T.; Zhao, R., Efficient semi-implicit schemes for stiff systems, J. Comput. Phy., 214, 521-537 (2006) · Zbl 1089.65094
[42] Greiner, M.; Mandel, O.; Esslinger, T.; Haänsch, T. W.; Bloch, I., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 415, 39-44 (2002)
[43] Antoine, X.; Duboscq, R., Gpelab, a matlab toolbox to solve Gross-Pitaevskii equations. I: computation of stationary solutions, Comput. Phys. Commun., 185, 11, 2969-2991 (2014) · Zbl 1348.35003
[44] Bao, W.; Lim, F. Y.; Zhang, Y., Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime, Bull. Inst. Math. Acad. Sin., 2, 495-532 (2007) · Zbl 1132.82003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.