Transcending classical invariant theory. (English) Zbl 0716.22006

Let \(\tilde Sp\) denote the twofold cover of the real symplectic group \(Sp_{2n}({\mathbb{R}})=Sp\). The theory of \(\theta\)-series as developed by Siegel is ruled by a certain representation \(\omega\) of \(\tilde Sp\), the so called oscillator representation first constructed by Shale and Weil. Let \((G,G')\) be a reductive dual pair, that is, G and \(G'\) are reductive subgroups of Sp one being the centralizer of the other. Let \(\tilde G,\) \(\tilde G'\) be their inverse images in \(\tilde Sp\). Then \(\omega |_{\tilde G\tilde G'}\) may be viewed as a representation of \(\tilde G\times \tilde G'\). Let for any subgroup E of \(\tilde Sp\) the notion R(E) stand for the set of irreducible representations of E modulo equivalence and \(R(E,\omega\)) for the set of all \(\sigma\in R(E)\) that occur as quotients of \(\omega| E\). In [Proc. Symp. Pure Math. 33, No.1, 275- 285 (1979; Zbl 0423.22016)] R. Howe stated the conjecture that \(R(\tilde G\tilde G',\omega)\) as a subset of \(R(\tilde G\times \tilde G')= R(\tilde G)\times R(\tilde G')\) is the graph of a bijection between \(R(\tilde G,\omega)\) and \(R(\tilde G',\omega)\). This correspondence may be viewed as underlying mechanism of the theta-correspondences in the theory of automorphic forms.
The paper under consideration contains a proof of this conjecture. At first the problem is algebraized by reformulating it in terms of \(({\mathfrak G},K)\)-modules. Then by noting that the maximal compact subgroup K of G also is a member of a reductive dual pair one constructs new pairs out of old ones and uses properties of compact pairs and classical invariant theory. There are some facts needed which only can be read off from the classification of reductive dual pairs. For this the classification over \({\mathbb{R}}\) is also included.
Reviewer: A.Deitmar


22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)


Zbl 0423.22016
Full Text: DOI


[1] Pierre Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 361 – 383.
[2] Универсал\(^{\приме}\)ные обертывающие алгебры., Издат. ”Мир”, Мосцощ, 1978 (Руссиан). Транслатед фром тхе Френч бы Ју. А. Бахтурин; Едитед бы Д. П. Žелобенко.
[3] D. Flath, Decomposition of representations into tensor products, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 179 – 183. · Zbl 0414.22019
[4] Stephen Gelbart, Holomorphic discrete series for the real symplectic group, Invent. Math. 19 (1973), 49 – 58. · Zbl 0236.22013 · doi:10.1007/BF01418850
[5] Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. II. Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), no. 1, 1 – 49. · Zbl 0361.22007
[6] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[7] Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539 – 570. , https://doi.org/10.1090/S0002-9947-1989-0986027-X Roger Howe, Erratum to: ”Remarks on classical invariant theory”, Trans. Amer. Math. Soc. 318 (1990), no. 2, 823. · Zbl 0674.15021
[8] R. Howe, \?-series and invariant theory, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275 – 285.
[9] Roger Howe, Quantum mechanics and partial differential equations, J. Funct. Anal. 38 (1980), no. 2, 188 – 254. · Zbl 0449.35002 · doi:10.1016/0022-1236(80)90064-6
[10] Richard V. Kadison, Remarks on the type of von Neumann algebras of local observables in quantum field theory, J. Mathematical Phys. 4 (1963), 1511 – 1516. · Zbl 0127.19201 · doi:10.1063/1.1703932
[11] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1 – 47. · Zbl 0375.22009 · doi:10.1007/BF01389900
[12] Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps \?-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). · Zbl 0642.22002
[13] S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), no. 3, 333 – 399. · Zbl 0624.22011
[14] Masahiko Saito, Représentations unitaires des groupes symplectiques, J. Math. Soc. Japan 24 (1972), 232 – 251 (French). · Zbl 0232.22025 · doi:10.2969/jmsj/02420232
[15] I. E. Segal, The complex-wave representation of the free boson field, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. in Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 321 – 343.
[16] David Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149 – 167. · Zbl 0171.46901
[17] David A. Vogan Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), no. 1, 1 – 60. · Zbl 0424.22010 · doi:10.2307/1971266
[18] J. L. Waldspurger, preprint.
[19] André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143 – 211 (French). · Zbl 0203.03305 · doi:10.1007/BF02391012
[20] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.