×

Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions. (English) Zbl 0716.35006

The authors prove a connection between relativistic Schrödinger operators and a class of stochastic processes. As application they investigate the decay of the eigenfunctions of these operators.
Reviewer: D.Robert

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
35P99 Spectral theory and eigenvalue problems for partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aizenman, M; Simon, B, Brownian motion and Harnack’s inequality for Schrödinger operators, Comm. pure appl. math., 35, 209-271, (1982) · Zbl 0459.60069
[2] Bakry, D, Étude des transformations de Riesz dans LES variétés riemanniennes à courbure négative minorée, (), to appear · Zbl 0629.58018
[3] Bakry, D, La propriété de sous-harmonicité des diffusions dans LES variétés, (), (to appear) · Zbl 0653.58043
[4] Blumenthal, R.M; Getoor, R.K, Some theorems on stable processes, Trans. amer. math. soc., 95, 263-273, (1960) · Zbl 0107.12401
[5] Blumenthal, R.M; Getoor, R.K, Markov processes and potential theory, (1968), Academic Press New York · Zbl 0169.49204
[6] Carmona, R, Pointwise bounds for Schrödinger eigenstates, Comm. math. phys., 62, 97-106, (1978) · Zbl 0403.47016
[7] Carmona, R, Regularity properties of Schrödinger and Dirichlet semigroups, J. funct. anal., 33, 59-98, (1981) · Zbl 0464.35085
[8] Carmona, R; Simon, B, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. lower bounds and path integrals, Comm. math. phys., 80, 59-98, (1981) · Zbl 0464.35085
[9] Carmona, R, Lévy processes and relativistic Schrödinger operators, (1989), in preparation
[10] Conlon, The ground state energy of a classical gas, Comm. math. phys., 94, 439-458, (1984) · Zbl 0946.82501
[11] Daubechies, I, An uncertainty principle for fermions with generalized kinetic energy, Comm. math. phys., 90, 311-320, (1983)
[12] Daubechies, I, One electron molecules with relativistic kinetic energy: properties of the discrete spectrum, Comm. math. phys., 94, 523-535, (1984)
[13] Daubechies, I; Lieb, E.H, One electron relativistic molecules with Coulomb interaction, Comm. math. phys., 90, 297-310, (1983) · Zbl 0946.81522
[14] Fefferman, C; de la Llave, R, Relativistic stability of matter—I, Rev. mat. iberoamer., 2, 119-223, (1986) · Zbl 0602.58015
[15] Fefferman, C, The N-body problem in quantum mechanics, Comm. pure appl. math., 39, S67-S109, (1986) · Zbl 0623.46041
[16] Fridstedt, B, Sample functions of stochastic processes with stationary independent increments, (), 241-396
[17] Herbst, I.W, Spectral theory of the operator (\(p\^{}\{2\} + m\^{}\{2\})\^{}\{12\} − Ze\^{}\{2\}r\), Comm. math. phys., 53, 285-294, (1977)
[18] Herbst, I.W; Sloan, A.D, Perturbation of translation invariant positivity preserving semigroups on L2(rn), Trans. amer. math. soc., 236, 325-360, (1978) · Zbl 0388.47022
[19] Jurek, Z.J; Smalara, J, On integrability with respect to infinitely divisible measures, Bull. acad. polon. sci. mat., 29, 179-185, (1981) · Zbl 0475.60004
[20] Kanter, M, Unimodality and dominance for symmetric random vectors, Trans. amer. math. soc., 229, 65-85, (1977) · Zbl 0379.60015
[21] Lieb, E, The stability of matter, Rev. modern phys., 48, 553-569, (1976)
[22] Lieb, E; Yau, H.T, Stability and instability of relativistic matter, Comm. math. phys., 118, 177-213, (1988) · Zbl 0686.35099
[23] Nardini, F, Exponential decay for the eigenfunctions of the two body relativistic Hamiltonian, J. analyse math., 47, 87-109, (1986) · Zbl 0626.35075
[24] Nardini, F, On the asymptotic behavior of the eigenfunctions of the relativistic N-body Schrödinger operator, (1988), preprint · Zbl 0672.35048
[25] Port, S; Stone, C; Port, S; Stone, C, Infinitely divisible processes and their potential theory, Ann. inst. Fourier (Grenoble), Ann. inst. Fourier (Grenoble), 21.4, 179-265, (1971) · Zbl 0215.53401
[26] Reed, M; Simon, B, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, (1975), Academic Press New York · Zbl 0308.47002
[27] Reed, M; Simon, B, Methods of modern mathematical physics. IV. analysis of operators, (1978), Academic Press New York · Zbl 0401.47001
[28] Ruelle, P, Brownian local time and quantum mechanics, J. statist. phys., 43, 609-620, (1986) · Zbl 0628.60085
[29] Simon, B, Trace ideals and their applications, (1979), Cambridge Univ. Press Cambridge · Zbl 0423.47001
[30] Simon, B, Functional integrals and quantum mechanics, (1981), Academic Press New York
[31] Simon, B, Schrödinger semigroups, Bull. amer. math. soc., 7, 447-526, (1982) · Zbl 0524.35002
[32] Stein, E, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Princeton, NJ · Zbl 0207.13501
[33] Weder, Spectral properties of one-body relativistic spin 0 Hamiltonians, Ann. inst. H. Poincaré ser. A, 2, 211-220, (1974)
[34] Weder, Spectral analysis of pseudodifferential operators, J. funct. anal., 20, 319-337, (1975) · Zbl 0317.47035
[35] Wolfe, S.J, On the unimodality of multivariate symmetric distribution functions of class L, J. multivariate anal., 8, 141-145, (1978) · Zbl 0379.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.