zbMATH — the first resource for mathematics

Tensor products of non-self-adjoint operator algebras. (English) Zbl 0716.46053
An arbitrary complex algebra \({\mathcal A}\) is said to be an operator algebra if there exists a representation \(\rho\) of \({\mathcal A}\) on some Hilbert space such that for every integer \(k\geq 1\) the algebra \({\mathcal M}_ k({\mathcal A})\) of \(k\times k\) matrices with entries from \({\mathcal A}\) is given the norm which is induced by \(\rho\). Such a family of norms on \({\mathcal M}_ k({\mathcal A})\) is called an operator norm. Given two unital operator algebras \({\mathcal A}_ 1\) and \({\mathcal A}_ 2\), a complete operator cross-norm is any operator norm on \({\mathcal A}_ 1\otimes {\mathcal A}_ 2\) which is a cross-norm and for which the natural inclusions of \({\mathcal A}_ i\) \((i=1,2)\) into \({\mathcal A}_ 1\otimes {\mathcal A}_ 1\) \((a_ 1\to a_ 1\otimes 1\), \(a_ 2\to 1\otimes a_ 2)\) induce isometries of \({\mathcal M}_ k({\mathcal A}_ i)\) into \({\mathcal M}_ k({\mathcal A}_ 1\otimes {\mathcal A}_ 2)\) for all k. In the present paper the authors introduce and study three natural complete operator cross-norms, called spatial, minimal and maximal. It is worth mentioning that, in general, the minimal and maximal norms may differ and to establish their equality is usually equivalent to the possibility of making use of Ando’s dilation theorem for commuting contractions or the commutant lifting theorem of Sz.-Nagy and Foiaş.
Reviewer: F.H.Vasilescu

46M05 Tensor products in functional analysis
46L05 General theory of \(C^*\)-algebras
47L30 Abstract operator algebras on Hilbert spaces
Full Text: DOI
[1] T. Ando, On a pair of commuting contractions, Acta Sci. Math. 24 (1963), 88-90. · Zbl 0116.32403
[2] W.B. Arveson, Subalgebras of \(C^*\)-algebras I, II, Acta. Math. 123 (1969), 141-224; 128 (1972), 271-308. · Zbl 0194.15701 · doi:10.1007/BF02392388
[3] M.J. Crabb and A.M. Davie, von Neumann’s inequality for Hilbert space operators, Bull. London Math. Soc. 7 (1975), 49-50 · Zbl 0301.47007 · doi:10.1112/blms/7.1.49
[4] E.G. Effros, On multilinear completely bounded module maps, Contemp. Math. 62 (1987), 479-501. · Zbl 0639.46049
[5] U. Haagerup, The Grothendieck inequality for bilinear forms on \(C^*\)-algebras, Adv. in Math. 56 (1985), 93-116. · Zbl 0593.46052 · doi:10.1016/0001-8708(85)90026-X
[6] E.C. Lance, Tensor products and nuclear \(C^*\)-algebras, in Operator Algebras and Applications (R.V. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc. Providence, 1982. · Zbl 0498.46044
[7] S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481-490. · Zbl 0202.41802 · doi:10.2140/pjm.1970.34.481
[8] V.I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., Longman, London, 1986. · Zbl 0614.47006
[9] ——– and S.C. Power, Lifting theorems for nest algebras, J.Operator Theory 20 (1988), 311-327. · Zbl 0682.47025
[10] ——– ——– and J.D. Ward, Semi-discreteness and dilation theory for nest algebras, J. Funct. Anal. 80 (1988), 76-87. · Zbl 0675.47042 · doi:10.1016/0022-1236(88)90066-3
[11] ——– and R.R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), 258-276. · Zbl 0644.46037 · doi:10.1016/0022-1236(87)90068-1
[12] Z.-J. Ruan, Subspaces of \(C^*\)-algebras, J. Funct. Anal. 76 (1988), 217-230. · Zbl 0646.46055 · doi:10.1016/0022-1236(88)90057-2
[13] B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, American Elsevier, New York, 1970. · Zbl 0201.45003
[14] M. Takesaki, Theory of operator algebras, Springer-Verlag, Berlin, 1979. · Zbl 0436.46043
[15] N.Th. Varopolos, On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory, J. Funct. Anal. 16 (1974), 83-100. · Zbl 0288.47006 · doi:10.1016/0022-1236(74)90071-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.