zbMATH — the first resource for mathematics

Distributed secondary frequency control in microgrids: robustness and steady-state performance in the presence of clock drifts. (English) Zbl 1429.93232
Summary: Microgrids are distributed systems with high share of inverter-interfaced renewable energy sources where stable and reliable system operation is realized by suitably controlling the inverters. In this work, we focus on secondary frequency control, which is an important ancillary service provided by the inverters. In the literature on secondary frequency control, the effect of clock drifts has often been neglected. However, clock drifts are practically unavoidable parameter uncertainties in inverter-based microgrids and we show that the most commonly employed distributed secondary frequency controllers exhibit performance deteriorations when taking clock drifts explicitly into consideration. Motivated by this, we propose a novel alternative control law called generalized distributed averaging integral (GDAI) control, which achieves the secondary control objectives of steady-state accurate frequency restoration and proportional power sharing in the presence of clock drifts. In addition, we derive a sufficient tuning criterion in the form of a set of linear matrix inequalities (LMIs) which guarantees robust stability of the closed-loop equilibrium point in the presence of uncertain clock drifts. Finally, our analysis is validated extensively via simulation with comprehensive comparisons to other related distributed control approaches.
93C80 Frequency-response methods in control theory
93B35 Sensitivity (robustness)
93B70 Networked control
93A15 Large-scale systems
Full Text: DOI
[1] Alghamdi, S.; Schiffer, J.; Fridman, E., Distributed secondary frequency control design for microgrids: trading off l2-gain performance and communication efforts under time-varying delays, Proceedings of the European Control Conference, 758-763 (2018)
[2] Anderson, P.; Fouad, A., Power System Control and Stability (2002), J.Wiley & Sons
[3] Anritsu, Understanding Frequency Accuracy in Crystal Controlled Instruments - Application Note, Technical Report (2001)
[4] Bidram, A.; Davoudi, A., Hierarchical structure of microgrids control system, IEEE Trans. Smart Grid, 3, 4, 1963-1976 (2012)
[5] Bidram, A.; Lewis, F.; Davoudi, A., Distributed control systems for small-scale power networks: using multiagent cooperative control theory, IEEE Control Syst. Mag., 34, 6, 56-77 (2014)
[6] Castilla, M.; Camacho, A.; Martí, P.; Velasco, M.; Ghahderijani, M. M., Impact of clock drifts on communication-free secondary control schemes for inverter-based islanded microgrids, IEEE Trans. Ind. Electron., 65, 4739-4749 (2017)
[7] Castilla, M.; Camacho, A.; Miret, J.; Velasco, M.; Marti, P., Local secondary control for inverter-based islanded microgrids with accurate active-power sharing under high load conditions, IEEE Trans. Ind. Electron, 66, 4, 2529-2539 (2019)
[8] Chandorkar, M.; Divan, D.; Adapa, R., Control of parallel connected inverters in standalone AC supply systems, 29, 1, 136-143 (1993)
[9] Diestel, R., Graph Theory (2010), Springer
[10] Dörfler, F.; Simpson-Porco, J. W.; Bullo, F., Breaking the hierarchy: Distributed control & economic optimality in microgrids, IEEE Trans. Control Netw. Syst., 3, 3, 241-253 (2016) · Zbl 1370.93157
[11] Farhangi, H., The path of the smart grid, IEEE Power Energy Mag., 8, 1, 18-28 (2010)
[12] Fu, X.; Dörfler, F.; Jovanović, M. R., Topology identification and design of distributed integral action in power networks, Proceedings of the American Control Conference (ACC), 5921-5926 (2016)
[13] Godsil, C.; Royle, G., Algebraic Graph Theory (2001), Springer · Zbl 0968.05002
[14] Golestan, S.; Monfared, M.; Freijedo, F. D., Design-oriented study of advanced synchronous reference frame phase-locked loops, 28, 765-778 (2012)
[15] Guerrero, J.; Loh, P.; Chandorkar, M.; Lee, T., Advanced control architectures for intelligent microgrids-part I: decentralized and hierarchical control, IEEE Trans. Ind. Electron., 60, 4, 1254-1262 (2013)
[16] C.A. Hans, V. Nenchev, J. Raisch, C. Reincke-Collon, Minimax model predictive operation control of microgrids, 2014. Proceedings of the 19th IFAC World Congress, Cape Town, South Africa.
[17] Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C., Microgrids, IEEE PowerEnergy Mag., 5, 4, 78-94 (2007)
[18] Horn, R. A.; Johnson, C. R., Matrix Analysis (2012), Cambridge University Press
[19] Kolluri, R. R.; Mareels, I.; Alpcan, T.; Brazil, M.; de Hoog, J.; Thomas, D. A., Power sharing in angle droop controlled microgrids, IEEE Trans. Power Syst., 32, 6, 4743-4751 (2017)
[20] Kolluri, R. R.; Mareels, I.; Alpcan, T.; Brazil, M.; de Hoog, J.; Thomas, D. A., Stability and active power sharing in droop controlled inverter interfaced microgrids: effect of clock mismatches, Automatica, 93, 469-475 (2018) · Zbl 1400.93008
[21] Kopetz, H., Real-Time Systems: design Principles for Distributed Embedded Applications (2011), Springer · Zbl 1226.68001
[22] Krishna, A.; Hans, C. A.; Schiffer, J.; Raisch, J.; Kral, T., Steady state evaluation of distributed secondary frequency control strategies for microgrids in the presence of clock drifts, Proceedings of the 25th Mediterranean Conference on Control and Automation (MED), 508-515 (2017)
[23] Krishna, A.; Schiffer, J.; Raisch, J., A consensus-based control law for accurate frequency restoration and power sharing in microgrids in the presence of clock drifts, Proceedings of the European Control Conference (ECC), 2575-2580 (2018)
[24] Kundur, P., Power System Stability and Control (1994), McGraw-Hill
[25] vol.1
[26] Löfberg, J., YALMIP : a toolbox for modeling and optimization in MATLAB, Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design, 284-289 (2004)
[27] Lopes, J.; Moreira, C.; Madureira, A., Defining control strategies for microgrids islanded operation, IEEE Trans. Power Syst., 21, 2, 916-924 (2006)
[28] Machowski, J.; Bialek, J.; Bumby, J., Power System dynamics: Stability and Control (2008), J.Wiley & Sons
[29] Majumder, R.; Ledwich, G.; Ghosh, A.; Chakrabarti, S.; Zare, F., Droop control of converter-interfaced microsources in rural distributed generation, IEEE Trans. Power Deliv., 25, 4, 2768-2778 (2010)
[30] Martí, P.; Torres-Martínez, J.; Rosero, C. X.; Velasco, M.; Miret, J.; Castilla, M., Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids, IEEE Trans. Power Electron., 33, 12, 10363-10379 (2018)
[31] Martínez, J. T.; Castilla, M.; Miret, J.; Ghahderijani, M. M.; Rey, J. M., Experimental study of clock drift impact over droop-free distributed control for industrial microgrids, Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society, IECON, 2479-2484 (2017)
[32] Mesbahi, M.; Egerstedt, M., Graph Theoretic Methods in Multiagent Networks (2010), Princeton University Press · Zbl 1203.93001
[33] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[34] Pai, M. A., Energy Function Analysis for Power System Stability (1989), Kluwer academic publishers
[35] Persis, C. D.; Monshizadeh, N., Bregman storage functions for microgrid control, IEEE Trans. Autom. Control, 63, 1, 53-68 (2017) · Zbl 1390.93600
[36] Persis, C. D.; Monshizadeh, N.; Schiffer, J.; Dörfler, F., A Lyapunov approach to control of microgrids with a network-preserved differential-algebraic model, Proceedings of the CDC, 2595-2600 (2016)
[37] Plexim GmbH, Plecs software, www.plexim.com, 2013.
[38] Rosero, C. X.; Carrasco, H.; Velasco, M.; MartÃ, P., Impact of clock drifts on active power sharing and frequency regulation in distributed-averaging secondary control for islanded microgrids, Proceedings of the International Autumn Meeting on Power, Electronics and Computing, 1-6 (2017)
[39] Rosero, C. X.; Martí, P.; Velasco, M.; Castilla, M.; Miret, J.; Camacho, A., Consensus for active power sharing and frequency restoration in islanded microgrids subject to drifting clocks, Proceedings of the IEEE 26th International Symposium on Industrial Electronics (ISIE), 70-75 (2017)
[40] Schenato, L.; Fiorentin, F., Average timesynch: a consensus-based protocol for clock synchronization in wireless sensor networks, Automatica, 47, 9, 1878-1886 (2011) · Zbl 1223.68022
[41] Schiffer, J., Stability and Power Sharing in Microgrids (2015), Technische Universität Berlin, Ph.D. thesis
[42] Schiffer, J.; Dörfler, F., On stability of a distributed averaging PI frequency and active power controlled differential-algebraic power system model, Proceedings of the European Control Conference (ECC), 1487-1492 (2016)
[43] Schiffer, J.; Dörfler, F.; Fridman, E., Robustness of distributed averaging control in power systems: time delays & dynamic communication topology, Automatica, 80, 261-271 (2017) · Zbl 1370.93207
[44] Schiffer, J.; Hans, C. A.; Kral, T.; Ortega, R.; Raisch, J., Modeling, analysis, and experimental validation of clock drift effects in low-inertia power systems, IEEE Trans. Ind. Electron, 64, 5942-5951 (2017)
[45] Schiffer, J.; Ortega, R.; Astolfi, A.; Raisch, J.; Sezi, T., Conditions for stability of droop-controlled inverter-based microgrids, Automatica, 50, 10, 2457-2469 (2014) · Zbl 1301.93145
[46] Schiffer, J.; Ortega, R.; Hans, C.; Raisch, J., Droop-controlled inverter-based microgrids are robust to clock drifts, Proceedings of the American Control Conference, 2341-2346 (2015)
[47] Simpson-Porco, J. W.; Dörfler, F.; Bullo, F., Synchronization and power sharing for droop-controlled inverters in islanded microgrids, Automatica, 49, 9, 2603-2611 (2013) · Zbl 1364.93544
[48] Simpson-Porco, J. W.; Shafiee, Q.; Dörfler, F.; Vasquez, J. C.; Guerrero, J. M.; Bullo, F., Secondary frequency and voltage control of islanded microgrids via distributed averaging, IEEE Trans. Ind. Electron., 62, 7025-7038 (2015)
[49] Solis, R.; Borkar, V. S.; Kumar, P. R., A new distributed time synchronization protocol for multihop wireless networks, Proceedings of the CDC, 2734-2739 (2006)
[50] van der Schaft, A., L2-Gain and Passivity Techniques in Nonlinear Control (2000), Springer · Zbl 0937.93020
[51] Weitenberg, E.; Jiang, Y.; Zhao, C.; Mallada, E.; Persis, C. D.; Dörfler, F., Robust decentralized secondary frequency control in power systems: Merits and tradeoffs, IEEE Trans. Autom. Control, 64, 64, 3967-3982 (2019)
[52] Zhao, C.; Mallada, E.; Dörfler, F., Distributed frequency control for stability and economic dispatch in power networks, IEEE Trans. Ind. Electron, 2359-2364 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.