zbMATH — the first resource for mathematics

Fire seasonality identification with multimodality tests. (English) Zbl 1435.62409
Summary: Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia-Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required.
62P12 Applications of statistics to environmental and related topics
62J15 Paired and multiple comparisons; multiple testing
62G10 Nonparametric hypothesis testing
Full Text: DOI Euclid
[1] Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2018). Applied directional statistics: Modern methods and case studies. In Chap. Directional Statistics for Wildfires (C. Ley and T. Verdebout, eds.) Chapman and Hall/CRC Press, Boca Raton, FL. · Zbl 1420.62155
[2] Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2019a). Mode testing, critical bandwidth and excess mass. Test. To appear. DOI:https://www.doi.org/10.1007/s11749-018-0611-5. · Zbl 1420.62155
[3] Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2019b). Supplement to “Fire seasonality identification with multimodality tests.” DOI:10.1214/19-AOAS1273SUPP.
[4] Benali, A., Mota, B., Carvalhais, N., Oom, D., Miller, L. M., Campagnolo, M. L. and Pereira, J. M. C. (2017). Bimodal fire regimes unveil a global scale anthropogenic fingerprint. Glob. Ecol. Biogeogr. 26 799-811.
[5] Benjamini, Y. and Heller, R. (2007). False discovery rates for spatial signals. J. Amer. Statist. Assoc. 102 1272-1281. · Zbl 1332.94019
[6] Benjamini, Y. and Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24 407-418. · Zbl 1090.62548
[7] Benjamini, Y., Krieger, A. M. and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93 491-507. · Zbl 1108.62069
[8] Cheng, M.-Y. and Hall, P. (1998). Calibrating the excess mass and dip tests of modality. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 579-589. · Zbl 0909.62046
[9] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York. · Zbl 0799.62002
[10] Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika 88 499-517. · Zbl 0985.62034
[11] Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87 273-282.
[12] Hall, P. and York, M. (2001). On the calibration of Silverman’s test for multimodality. Statist. Sinica 11 515-536. · Zbl 1026.62047
[13] Hall, J. V., Loboda, T. V., Giglio, L. and McCarty, G. W. (2016). A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment 184 506-521.
[14] Huckemann, S., Kim, K.-R., Munk, A., Rehfeldt, F., Sommerfeld, M., Weickert, J. and Wollnik, C. (2016). The circular SiZer, inferred persistence of shape parameters and application to early stem cell differentiation. Bernoulli 22 2113-2142. · Zbl 1349.62195
[15] Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 186 453-461. · Zbl 0063.03050
[16] Keeley, J. E., Safford, H., Fotheringham, C. J., Franklin, J. and Moritz, M. (2009). The 2007 southern California wildfires: Lessons in complexity. Journal of Forestry 107 287-296.
[17] Korontzi, S., McCarty, J., Loboda, T., Kumar, S. and Justice, C. O. (2006). Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles 20 202101-202115.
[18] Le Page, Y., Oom, D., Silva, J., Jönsson, P. and Pereira, J. M. C. (2010). Seasonality of vegetation fires as modified by human action: Observing the deviation from eco-climatic fire regimes. Glob. Ecol. Biogeogr. 19 575-588.
[19] Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman & Hall/CRC Interdisciplinary Statistics Series. CRC Press, Boca Raton, FL. · Zbl 1448.62005
[20] Loboda, T. V., Giglio, L., Boschetti, L. and Justice, C. O. (2012). Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia. Front. Earth Sci. 6 196-205.
[21] Magi, B. I., Rabin, S., Shevliakova, E. and Pacala, S. (2012). Separating agricultural and non-agricultural fire seasonality at regional scales. Biogeosciences 9 3003-3012.
[22] Müller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86 738-746. · Zbl 0733.62040
[23] Nichols, K., Schoenberg, F. P., Keeley, J. E., Bray, A. and Diez, D. (2011). The application of prototype point processes for the summary and description of California wildfires. J. Time Series Anal. 32 420-429.
[24] Oliveira, M., Crujeiras, R. M. and Rodríguez-Casal, A. (2012). A plug-in rule for bandwidth selection in circular density estimation. Comput. Statist. Data Anal. 56 3898-3908. · Zbl 1255.62106
[25] Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97-99.
[26] Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika 48 109-114. · Zbl 0212.21905
[27] Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R. and Dettinger, M. D. (2003). Climate and wildfire in the western United States. Bull. Am. Meteorol. Soc. 84 595-604.
[28] Xu, H. and Schoenberg, F. P. (2011). Point process modeling of wildfire hazard in Los Angeles County, California. Ann. Appl. Stat. 5 684-704. · Zbl 1223.62168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.