×

zbMATH — the first resource for mathematics

Entropy and adjoint methods. (English) Zbl 1431.76082
Summary: Aerodynamic drag can be partially approximated by the entropy flux across fluid domain boundaries with a formula due to Oswatitsch. In this paper, we build the adjoint solution that corresponds to this representation of the drag and investigate its relation to the entropy variables, which are linked to the integrated residual of the entropy transport equation. For inviscid isentropic flows, the resulting adjoint variables are identical to the entropy variables, an observation originally due to [K. J. Fidkowski and P. L. Roe, SIAM J. Sci. Comput. 32, No. 3, 1261–1287 (2010; Zbl 1213.65142)], while for non-isentropic flows there is a significant difference that is explicitly demonstrated with analytic solutions in the shocked quasi-1D case. Both approaches are also investigated for viscous and inviscid flows in two and three dimensions, where the adjoint equations and boundary conditions are derived. The application of both approaches to mesh adaptation is investigated, with especial emphasis on inviscid flows with shocks.
MSC:
76G25 General aerodynamics and subsonic flows
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics, general
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Software:
TAU
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 233-260 (1988) · Zbl 0676.76055
[2] Pierce, NA; Giles, MB, Adjoint and defect error bounding and correction for functional estimates, J. Comput. Phys., 200, 769-794 (2004) · Zbl 1058.65121
[3] Fidkowski, K.; Darmofal, D., Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J., 49, 673-694 (2011)
[4] Sharbatdar, M.; Ollivier-Gooch, C., Adjoint-based functional correction for unstructured mesh finite volume methods, J. Sci. Comput., 76, 1-23 (2018) · Zbl 1397.65152
[5] Rizzi, A., Spurious entropy production and very accurate solutions to the Euler equations, Aeronaut. J., 89, 59-71 (1985)
[6] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[7] Tadmor, E., Entropy functions for symmetric systems of conservation laws, J. Math. Anal. Appl., 122, 355-359 (1987) · Zbl 0624.35057
[8] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, 12, 451-512 (2003) · Zbl 1046.65078
[9] Naterer, GF; Camberos, JA, Entropy and the second law fluid flow and heat transfer simulation, J. Thermophys. Heat Transf., 17, 360-371 (2003)
[10] Puppo, G., Semplice, M.: Entropy and the numerical integration of conservation laws. In: Proceedings of the 2nd Annual Meeting of the Lebanese Society for Mathematical Sciences (LSMS-2011) (2011) · Zbl 1373.76140
[11] Papadimitriou, D., Giannakoglou, K.C.: A continuous adjoint method for the minimization of losses in cascade viscous flows. AIAA Paper 2006-49. https://doi.org/10.2514/6.2006-49
[12] Andrews, J. G.; Morton, K. W., Spurious entropy generation as a mesh quality indicator, 122-126 (1995), Berlin, Heidelberg · Zbl 0856.76053
[13] Naterer, GF; Rinn, D., Towards entropy detection of anomalous mass and momentum exchange in incompressible fluid flow, Int. J. Numer. Methods Fluids, 39, 1013-1036 (2002) · Zbl 1101.76361
[14] Puppo, G., Numerical entropy production for central schemes, SIAM J. Sci. Comput., 25, 1382-1415 (2003) · Zbl 1061.65094
[15] Golay, F., Numerical entropy production and error indicator for compressible flows, C. R. Mecanique, 337, 233-237 (2009) · Zbl 1173.76402
[16] Fidkowski, KJ; Roe, PL, An entropy adjoint approach to mesh refinement, SIAM J. Sci. Comput., 32, 1261-1287 (2010) · Zbl 1213.65142
[17] Fidkowski, K.; Ceze, M.; Roe, P., Entropy-based drag error estimation and mesh adaptation in two dimensions, J. Aircr., 49, 1485-1496 (2012)
[18] Ching, E., Ihme, Y.L.M.: Entropy residual as a feature-based adaptation indicator for simulations of unsteady flow. AIAA Paper 2016-0837. https://doi.org/10.2514/6.2016-0837
[19] Doetsch, K.T., Fidkowski, K.: Combined entropy and output-based adjoint approach for mesh refinement and error estimation. AIAA Paper 2018-0918. https://doi.org/10.2514/6.2018-0918
[20] Oswatitsch, K.: Gas Dynamics. Academic Press, New York (1956)
[21] Denton, JD, The 1993 IGTI scholar lecture: loss mechanisms in turbomachines, ASME J. Turbomach., 115, 621-656 (1993)
[22] Lozano, C.: The entropy adjoint for shocked flows: application to the quasi-one-dimensional Euler equations (2014). https://doi.org/10.13140/rg.2.2.27482.54725
[23] Giles, MB; Cummings, RM, Wake integration for three-dimensional flowfield computations: theoretical development, J. Aircr., 36, 357-365 (1999)
[24] Destarac, D.: Far-field/near-field drag balance and applications of drag extraction in CFD. In: Deconinck, H., Sermeus, K., Van Dam, C. (eds.) CFD-Based Aircraft Drag Prediction and Reduction. VKI for Fluid Dynamics, Lecture Series 2003-02. Rhode-Saint-Genèse, Belgium, 3-7 Feb 2003
[25] Yamazaki, W.; Matsushima, K.; Nakahashi, K., Drag decomposition-based adaptive mesh refinement, J. Aircr., 44, 1896-1905 (2007)
[26] Lozano, C., Singular and discontinuous solutions of the adjoint euler equations, AIAA J., 56, 4437-4452 (2018)
[27] Müller, J.-D., Giles, M.B.: Solution adaptive mesh refinement using adjoint error analysis. In: 15th Computational Fluid Dynamics Conference (AIAA Paper 2001-2550), Anaheim, CA, 11-14 June 2001. https://doi.org/10.2514/6.2001-2550
[28] Giles, Michael B.; Pierce, Niles A., Adjoint Error Correction for Integral Outputs, 47-95 (2003), Berlin, Heidelberg · Zbl 1128.76356
[29] Venditti, D.; Darmofal, D., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187, 22-46 (2003) · Zbl 1047.76541
[30] Fraysse, F.; Vicente, J.; Valero, E., The estimation of truncation error by τ-estimation revisited, J. Comput. Phys., 231, 3457-3482 (2012) · Zbl 1242.65222
[31] Fraysse, F.; Valero, E.; Ponsin, J., Comparison of mesh adaptation using the adjoint methodology and truncation error estimates, AIAA J., 50, 1920-1932 (2012)
[32] Ponsin, J.; Fraysse, F.; Gómez, M.; Cordero-Gracia, M., An adjoint-truncation error based approach for goal-oriented mesh adaptation, Aerosp. Sci. Technol., 41, 229-240 (2015)
[33] Dwight, R., Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation, J. Comput. Phys., 227, 2845-2863 (2008) · Zbl 1169.76039
[34] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[35] Lv, Y.; See, YC; Ihme, M., An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods, J. Comput. Phys., 322, 448-472 (2016) · Zbl 1351.76068
[36] Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, CA, June 1981. https://doi.org/10.2514/6.1981-1259
[37] Anderson, J.D.: Modern Compressible Flow, 2nd edn, p. 155. McGraw-Hill, New York (1990)
[38] Giles, MB; Pierce, NA, Analytic adjoint solutions for the quasi-one-dimensional Euler equations, J. Fluid Mech., 426, 327-345 (2001) · Zbl 0967.76079
[39] Lozano, C.; Ponsin, J., Remarks on the numerical solution of the adjoint quasi-one-dimensional Euler equations, Int. J. Numer. Methods Fluids, 69, 966-982 (2012) · Zbl 1253.76068
[40] Roe, PL, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[41] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 1252-1286 (2013) · Zbl 1373.76121
[42] Lozano, C.: Entropy and adjoint methods: the Oswatitsch drag adjoint (2019). https://doi.org/10.13140/rg.2.2.31338.77761
[43] Baeza, A.; Castro, C.; Palacios, F.; Zuazua, E., 2-D Euler shape design on nonregular flows using adjoint Rankine-Hugoniot relations, AIAA J., 47, 552-562 (2009)
[44] Giles, M.; Hou, TY (ed.); Tadmor, E. (ed.), Discrete adjoint approximations with shocks, 185-194 (2003), Berlin · Zbl 1134.76396
[45] Barth, T.J.: Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. In: Special Course on Unstructured Methods for Advection Dominated Flows, AGARD Rept. 787, pp. 6-1-6-61 (1991)
[46] Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: ECCOMAS CFD 2006, European Conference on CFD, Egmond aan Zee, The Netherlands (2006)
[47] Castro, C.; Lozano, C.; Palacios, F.; Zuazua, E., Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids, AIAA J., 45, 2125-2139 (2007)
[48] Ponsin, J.: Efficient adaptive methods based on adjoint equations and truncation error estimation for unstructured grids. Ph.D. thesis, Technical University of Madrid (2013). http://oa.upm.es/23179/1/JORGE_PONSIN_ROCA.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.