×

zbMATH — the first resource for mathematics

Duration of long-term care: socio-economic factors, type of care interactions and evolution. (English) Zbl 1431.91326
Summary: The time spent in dependence and the type of care an elderly receives are the two main cost drivers of long-term care (LTC). We aim to provide a better understanding of the duration of care by using a comprehensive social insurance dataset covering the LTC needs in Switzerland over a 20-years-period and including 230,000 observations on dependent elderly. First, using the framework of survival analysis, we calculate Kaplan-Meier estimates for the care duration and derive the main explaining factors through econometric models when care is received at home and in an institution. Retaining only significant covariates, the final accelerated failure time models allow us to predict the duration for different profiles of elderly along their age, gender, region of residence, type of household composition, acuity level and pre-retirement income. Second, we study the interaction of care durations when care is provided at home and in an institution. While our data supports that for short at-home care durations the time spent in institutional care is reduced, we find that both types of care are non-substitutes when the time spent at home has been longer. Under the latter regime, the time spent in institutional care remains at a constant level. Finally, given the longevity improvements over the period of observation, we analyze the impact of living longer on the time spent in dependence. Our results show that while the mean age at entry in dependence grows, the overall care duration does not significantly change. Given the expected increasing number of elderly in most developed countries, our study is relevant for government planning, budgeting social insurance schemes, estimating personal savings needs and calculating private insurance premiums.

MSC:
91G05 Actuarial mathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aalen, O. O.; Borgan, Ø.; Gjessing, H. K., (Survival and Event History Analysis. Survival and Event History Analysis, Statistics for Biology and Health (2008), Springer: Springer New York) · Zbl 1204.62165
[2] Becker, U.; Reinhard, H.-J., Long-Term Care in Europe: A Juridical Approach (2018), Springer: Springer Munich
[3] Biessy, G., 2016. A semi-Markov model with pathologies for long-term care insurance. Working Paper, Université d’Évry Val d’Essonne.
[4] Brown, J. R.; Finkelstein, A., Why is the market for long-term care insurance so small?, J. Publ. Econ., 91, 10, 1967-1991 (2007)
[5] Brown, J. R.; Finkelstein, A., The interaction of public and private insurance : Medicaid and the long-term care insurance market, Amer. Econ. Rev., 98, 3, 1083-1102 (2008)
[6] Brown, J. R.; Finkelstein, A., The private market for long-term care insurance in the United States: A review of the evidence, J. Risk Insurance, 76, 1, 5-29 (2009)
[7] Buchmueller, T. C.; Gilmer, T.; Harris, K., Long-term care over an uncertain future: What can current retirees expect?, Inquiry, 42, 4, 335-350 (2005)
[8] Cadena, M.; Denuit, M., Semi-parametric accelerated hazard relational models with applications to mortality projections, Insurance Math. Econom., 68, 1-16 (2016) · Zbl 1373.62513
[9] Callahan, C. M.; Arling, G.; Tu, W.; Rosenman, M. B.; Counsell, S. R.; Stump, T. E.; Hendrie, H. C., Transitions in care for older adults with and without dementia, J. Am. Geriatr. Soc., 60, 5, 813-820 (2012)
[10] Carrns, A., 2015. Managing the costs of long-term care insurance. New York Times, 2 Sept.
[11] Chammartin, F.; Probst-Hensch, N.; Utzinger, J.; Vounatsou, P., Mortality atlas of the main causes of death in Switzerland, Swiss Med. Weekly, 146, 1-13 (2016)
[12] Charles, K. K.; Sevak, P., Can family caregiving substitute for nursing home care?, J. Health Econ., 24, 6, 1174-1190 (2005)
[13] Choi, J. K.; Joung, E., The association between the utilization of long-term care services and mortality in elderly Koreans, Arch. Gerontol. Geriatr., 65, July, 122-127 (2016)
[14] Collett, D., Modelling Survival Data in Medical Research, 548 (2015), Chapman and Hall/CRC: Chapman and Hall/CRC London
[15] Colombo, F.; Llena-Nozal, A.; Mercier, J.; Tjadens, F., Help Wanted?: Providing and Paying for Long-Term Care (2011), OECD Health Policy Studies, OECD Publishing
[16] Costa-Font, J.; Courbage, C., (Costa-Font, J.; Courbage, C., Financing Long-Term Care in Europe (2012), Palgrave Macmillan: Palgrave Macmillan New York)
[17] Courbage, C., Montoliu-Montes, G., Wagner, J., 2018. Informal care, long-term care insurance and intra-family moral hazard: Empirical evidence from Italy and Spain. Working Paper, University of Lausanne.
[18] Czado, C.; Rudolph, F., Application of survival analysis methods to long-term care insurance, Insurance Math. Econom., 31, 3, 395-413 (2002) · Zbl 1074.62526
[19] D’Amico, G.; Guillen, M.; Manca, R., Full backward non-homogeneous semi-Markov processes for disability insurance models: A catalunya real data application, Insurance Math. Econom., 45, 2, 173-179 (2009) · Zbl 1231.91169
[20] Doty, P.; Nadash, P.; Racco, N., Long-term care financing: Lessons from France, Milbank Q., 93, 2, 359-391 (2015)
[21] Dutoit, L.; Füglister-Dousse, S.; Pellegrini, S., Soins de Longue Durée dans les Cantons: un même Défi, Différentes Solutions (2016), Observatoire Suisse de la Santé: Observatoire Suisse de la Santé Neuchâtel
[22] Eckert, J. K.; Morgan, L. A.; Swamy, N., Preferences for receipt of care among community-dwelling adults, J. Aging Soc. Policy, 16, 2, 49-65 (2004)
[23] Eugster, B.; Lalive, R.; Steinhauer, A.; Zweimüller, J., The demand for social insurance: Does culture matter?, Econ. J., 121, 556, 413-448 (2011)
[24] Feder, J.; Komisar, H. L.; Niefeld, M., Long-term care in the United States: An overview, Health Affairs, 19, 3, 40-56 (2000)
[25] Mise en Oeuvre du Financement des Soins (2013)
[26] Fong, J. H.; Sherris, M.; Yap, J., Forecasting disability: Application of a frailty model, Scand. Actuar. J., 2017, 2, 125-147 (2017) · Zbl 1401.91137
[27] Frank, R. G., Long-term care financing in the United States: Sources and institutions, Appl. Econ. Perspect. Policy, 34, 2, 333-345 (2012)
[28] Freedman, V. A.; Martin, L. G., Understanding trends in functional limitations among older Americans, Am J Public Health, 88, 10, 1457-1462 (1998)
[29] Fried, L. P.; Tangen, C. M.; Walston, J.; Newman, A. B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W. J.; Burke, G.; McBurnie, M. A., Frailty in older adults: Evidence for a phenotype, J. Gerontol. Ser. A: Biol. Sci. Med. Sci., 56, 3, 146-157 (2001)
[30] Fries, J. F., Aging, natural death, and the compression of morbidity, New Engl. J. Med., 303, 3, 130-135 (1980)
[31] Fries, J. F., The compression of morbidity: Near or far?, Milbank Q., 67, 3, 208-232 (1989)
[32] Fries, J. F., The compression of morbidity, Milbank Q., 83, 4, 801-823 (2005)
[33] Fuino, M., Rudnytskyi, I., Wagner, J., 2019. On the socio-demographic and medical drivers of long-term care needs in Europe. Working Paper, University of Lausanne.
[34] Fuino, M.; Wagner, J., Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland, Insurance Math. Econom., 81, 51-70 (2018) · Zbl 1416.91178
[35] Fuino, M.; Wagner, J., Old-age care prevalence in Switzerland: Drivers and future development, Eur. Actuar. J., 8, 2, 321-362 (2018) · Zbl 1422.91345
[36] Fujisawa, R.; Colombo, F., The Long-Term Care Workforce: Overview and Strategies to Adapt Supply to a Growing Demand (2009), OECD Publishing
[37] Gentili, E.; Masiero, G.; Mazzonna, F., The role of culture in long-term care arrangement decisions, J. Econ. Behav. Organ., 143, 186-200 (2017)
[38] Germain, C. M.; Vasquez, E.; Batsis, J. A.; McQuoid, D. R., Sex, race and age differences in muscle strength and limitations in community dwelling older adults: Data from the health and retirement survey (HRS), Arch. Gerontol. Geriatr., 65, 98-103 (2016)
[39] Gruenberg, E. M., The failures of success, Milbank Q., 83, 4, 779-800 (2005)
[40] Harrington, D. P.; Fleming, T. R., A class of rank test procedures for censored survival data, Biometrika, 69, 3, 553-566 (1982) · Zbl 0532.62026
[41] Helmchen, L. A.; Lo Sasso, A. T., The causal effects of home care use on institutional long-term care utilization and expenditures, Health Econ., 24, 1, 4-17 (2015)
[42] Helsana, L. A., Assurance des Soins de Longue Durée (2019)
[43] Hougaard, P., Heterogeneity models of disease susceptibility, with application to diabetic nephropathy, Biometrics, 50, 4, 1178-1188 (1994)
[44] Jackson, C., flexsurv: A platform for parametric survival modeling in R, J. Stat. Softw., 70, 8, 1-33 (2016)
[45] Juma, S.; Taabazuing, M.-m.; Montero-Odasso, M., Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay, Can. Geriatr. J., 19, 2, 34-39 (2016)
[46] Junhua, W.; Haozhe, C.; Shi, Q., Estimating freeway incident duration using accelerated failure time modeling, Saf. Sci., 54, 43-50 (2013)
[47] Kaplan, E. L.; Meier, P., Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53, 282, 457-481 (1958) · Zbl 0089.14801
[48] Karadeniz, P. G.; Ercan, I., Examining tests for comparing survival curves with right censored data, Stat. Trans. New Series, 18, 2, 311-328 (2017)
[49] Kaye, H. S.; LaPlante, M. P.; Harrington, C., Do noninstitutional long-term care services reduce medicaid spending?, Health Affairs, 28, 1, 262-272 (2009)
[50] Keiding, N.; Andersen, P. K.; Klein, J. P., The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates, Stat. Med., 16, 2, 215-224 (1997)
[51] Klein, J. P.; Moeschberger, M. L., (Survival Analysis Techniques for Censored and Truncated Data. Survival Analysis Techniques for Censored and Truncated Data, Statistics for Biology and Health (1997), Springer: Springer New York) · Zbl 0871.62091
[52] Kramer, M., The rising pandemic of mental disorders and associated chronic diseases and disabilities, Acta Psychiatr. Scand., 62, 285, 382-397 (1980)
[53] Lafortune, G.; Balestat, G., Trends in Severe Disability Among Elderly People (2007), OECD Publishing: OECD Publishing Paris
[54] Lambert, P.; Collett, D.; Kimber, A.; Johnson, R., Parametric accelerated failure time models with random effects and an application to kidney transplant survival, Stat. Med., 23, 20, 3177-3192 (2004)
[55] Lee, K. H.; Rondeau, V.; Haneuse, S., Accelerated failure time models for semi-competing risks data in the presence of complex censoring, Biometrics, 73, 4, 1401-1412 (2017) · Zbl 1405.62187
[56] Lin, D., Accelerated failure time models for counting processes, Biometrika, 85, 3, 605-618 (1998) · Zbl 0947.62069
[57] Llena-Nozal, A.; Mercier, J.; Tjadens, F.; Colombo, F., Help wanted?, (Help Wanted? Providing and Paying for Long-Term Care (2011), OECD Publishing: OECD Publishing Paris), 61-84
[58] Lumley, T.; Diehr, P.; Emerson, S.; Chen, L., The importance of the normality assumption in large public health data sets, Annu. Rev. Publ. Health, 23, 1, 151-169 (2002)
[59] Marengoni, A.; Angleman, S.; Melis, R.; Mangialasche, F.; Karp, A.; Garmen, A.; Meinow, B.; Fratiglioni, L., Aging with multimorbidity: A systematic review of the literature, Ageing Res. Rev., 10, 4, 430-439 (2011)
[60] Mathers, C., Trends in health expectancies in Australia 1981-1993, J. Aust. Population Assoc., 13, 1, 1-15 (1996)
[61] Mathers, C.; Vos, T.; Stevenson, C., The burden of disease and injury in Australia, World Health Organ., 23, 1, 1076-1084 (2001)
[62] Mcauley, W. J.; Blieszner, R., Selection of long-term care arrangements by older community residents, The Gerontologist, 25, 2, 188-193 (1985)
[63] Mcgarry, K., Multiple dimensions of private information: Evidence from the long-term care insurance market, Amer. Econ. Rev., 96, 4, 938-958 (2011)
[64] Milliman, K., LTCI Survey Product Exhibit (2017), Broker World: Broker World New York
[65] Mobley, L. R.; Root, E.; Anselin, L.; Lozano-Gracia, N.; Koschinsky, J., Spatial analysis of elderly access to primary care services, Int. J. Health Geogr., 5, 19, 1-17 (2006)
[66] Mommaerts, C., 2015. Long-term care insurance and the family. Working Paper, University of Wisconsin.
[67] Monod-Zorzi, S.; Seematter-Bagnoud, L.; Büla, C.; Pellegrini, S.; Jaccard Ruedin, H., Maladies Chroniques et Dépendance Fonctionnelle des Personnes Agées (2007), Observatoire Suisse de la Santé: Observatoire Suisse de la Santé Neuchâtel
[68] Nichols, B. L.; Davis, C. R.; Richardson, D. R., Global nursing issues, (Annual Review of Nursing Research (2010), Springer: Springer New York), 113-132
[69] Nordman, E. C., The State of Long-Term Care Insurance: The Market, Challenges and Future Innovations (2016), The Center for Insurance Policy and Research: The Center for Insurance Policy and Research New York
[70] Health at a Glance 2017: OECD Indicators (2017), OECD Publishing: OECD Publishing Paris
[71] Olshansky, S.; Carnes, B. A.; Cassel, C., In search of Methuselah: Estimating the upper limits to human longevity, Science, 250, 4981, 634-640 (1990)
[72] Orbe, J.; Ferreira, E.; Núñez-Antón, V., Comparing proportional hazards and accelerated failure time models for survival analysis, Stat. Med., 21, 22, 3493-3510 (2002)
[73] Patel, K.; Kay, R.; Rowell, L., Comparing proportional hazards and accelerated failure time models: an application in influenza, Pharm. Statist., 5, 3, 213-224 (2006)
[74] Payne, G.; Laporte, A.; Deber, R.; Coyte, P. C., Counting backward to health care’s future: Using time-to-death modeling to identify changes in end-of-life morbidity and the impact of aging on health care expenditures, Milbank Q., 85, 2, 213-257 (2007)
[75] Pellegrini, S.; Hélène, J. R.; Jeanrenaud, C., Coûts des Etablissements Médico-Sociaux et des Services d’Aide et de Soins à Domicile (2006), Observatoire Suisse de la Santé: Observatoire Suisse de la Santé Neuchâtel
[76] Pepe, M. S.; Fleming, T. R., Weighted Kaplan-Meier statistics : A class of distance tests for censored survival data, Biometrics, 45, 2, 497-507 (1989) · Zbl 0715.62087
[77] Pinquart, M.; Sörensen, S., Spouses, adult children, and children-in-law as caregivers of older adults: A meta-analytic comparison, Psychol. Aging, 26, 1, 1-14 (2011)
[78] Planchet, F.; Guibert, Q.; Schwarzinger, M., Mesure de l’Espérance de Vie en Dépendance Totale en France, Bull. Fr. Actuar., 18, 35, 133-159 (2018)
[79] Rashwan, W., Ragab, M., Abo-Hamad, W., Arisha, A., 2013. Evaluating policy interventions for delay discharge: A system dynamics approach. In: Proceedings of the 2013 Winter Simulation Conference, pp. 2463-2474.
[80] Reinhard, H.-J., Long-term care in Germany, (Becker, U.; Reinhard, H.-J., Long-Term Care in Europe: A Juridical Approach (2018), Springer: Springer Munich)
[81] Rodrigues, R.; Ilinca, S.; Schmidt, A. E., Income-rich and wealth-poor? The impact of measures of socio-economic status in the analysis of the distribution of long-term care use among older people, Health Econ., 27, 3, 637-646 (2018)
[82] Sakamoto, Y.; Ishiguro, M.; Kitagawa, G., Akaike Information Criterion Statistics (1986), Springer: Springer New York · Zbl 0608.62006
[83] Schulz, E., The Long-Term Care System for the Elderly in Germany (2010), European Network of Economic Policy Research Institutes: European Network of Economic Policy Research Institutes Bruxelles
[84] Schwarzkopf, L.; Menn, P.; Leidl, R.; Wunder, S.; Mehlig, H.; Marx, P.; Graessel, E.; Holle, R., Excess costs of dementia disorders and the role of age and gender - An analysis of german health and long-term care insurance claims data, BMC Health Serv. Res., 12, 1-12 (2012)
[85] Stevenson, D. G.; Grabowski, D. C., Sizing up the market for assisted living, Health Affairs, 29, 1, 35-43 (2010)
[86] Swindell, W. R., Accelerated failure time models provide a useful statistical framework for aging research, Exp. Geront., 44, 3, 190-200 (2008)
[87] Swiss Federal Social Insurance Office, 2018. Circular on the Individual Account, No. 318.106.02, pp. 1-97.
[88] Swiss Re, 2014. How Will We care? finding sustainable long-term care solutions for an ageing world. Sigma, No 5/2014.
[89] Therneau, T. M.; Grambsch, P. M., Modeling Survival Data: Extending the Cox Model (2000), Springer: Springer Berlin · Zbl 0958.62094
[90] Tseng, Y. K.; Hsieh, F.; Wang, J. L., Joint modelling of accelerated failure time and longitudinal data, Biometrika, 92, 3, 587-603 (2005) · Zbl 1152.62380
[91] World Population Ageing 2015 (2015), Departement of Economic and Social Affairs, Population Division: Departement of Economic and Social Affairs, Population Division New York
[92] (2016), United Nations Development Programme: United Nations Development Programme New York
[93] Vasselle, A., Rapport d’Information (2008), Sénat Français: Sénat Français Paris
[94] Venables, W. N.; Ripley, B. D., (Chambers, J. D.; Eddy, W.; Händle, W.; Sheather, S.; Tierney, L., Modern Applied Statistics with S-Plus (2002), Springer: Springer New York) · Zbl 1006.62003
[95] Viña, J.; Lloret, A., Why women have more alzheimer’s disease than men: Gender and mitochondrial toxicity of amyloid-\( \beta\) peptide, J. Alzheimer’s Dis., 20, 527-533 (2010)
[96] Wei, L. J., The accelerated failure time model: A useful alternative to the cox regression model in survival analysis, Stat. Med., 11, 1871-1879 (1992)
[97] Migration of Health Workers, 1-220 (2014), WHO Document Production Services: WHO Document Production Services Geneva
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.