×

zbMATH — the first resource for mathematics

A time domain finite element approach based on time series estimation. (English) Zbl 07162024
Summary: This paper details the use of time series for solving finite element equations. It was aimed at eliminating the discretization of time intervals to reduce calculation time and to obtain accurate results using time-dependent variables. For this purpose, the matrix form of the time series finite element formulation for both continuous and discontinuous time functions were extracted using Taylor and Fourier series for estimating time-dependent functions. Based on the extracted formulation, for solving elastodynamic problems, a computer code and algorithm was introduced. The efficiency and accuracy of the formulation was evaluated by solving different analytical examples. To reveal the power of time series for modeling real problems three practical examples such as settlement, flood protector structures and temporary cofferdams were modeled using time series approach and the results of analyses were presented. The results showed that having removed time discretization procedure, the time series based finite element method can be efficiently applied to decrease the calculation time and computational efforts. In addition, time-continuous responses resulting from this method, help reduce the calculation steps which is vital in many engineering problems.

MSC:
74 Mechanics of deformable solids
Software:
DEMPack
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdelatif, A. O.; Owen, J. S.; Hussein, M. F.M., Modelling the prestress transfer in pre-tensioned concrete elements, Finite Elem. Anal. Des., 94, 47-63 (2015)
[2] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), Dover: Dover New York · Zbl 0543.33001
[3] Achenbach, J. D., Wave Propagation in Elastic Solids (1973), North-Holland.: North-Holland. Amsterdam · Zbl 0268.73005
[4] Arfken, G., Mathematical Methods for Physicists (1985), Academic Press: Academic Press Orlando FL · Zbl 0135.42304
[5] Argyris, J. H., Energy theorems and structural analysis, Aircr. Eng., 154-158 (1955)
[6] Askey, R.; Haimo, D. T., Similarities between Fourier and power series, Am. Math. Mon., 103, 297-304 (1996) · Zbl 0854.33005
[7] Bathe, K. J., Finite Element Procedures (1996), PRENTICE HALL: PRENTICE HALL New Jersey
[8] Ching, J.; Phoon, K. K., Effect of element sizes in random field finite element simulations of soil shear strength, Comput. Struct., 126, 120-134 (2013)
[9] Courant, R., Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 1, 23-49 (1943) · Zbl 0810.65100
[10] Genta, G.; Tonoli, A., A harmonic finite element for the analysis of flexural, torsional and axial rotor dynamic behavior of blade arrays, J. Sound Vib., 207, 693-720 (1997)
[11] Gupta, V.; Kim, D. J.; Duarte, A. C., Extensions of the two-scale generalized finite element method to nonlinear fracture problems, Int. J. Multiscale Comput. Eng., 11, 581-596 (2013)
[12] Hayata, K.; Koshiba, M.; Suzuki, M., A method for improving the accuracy of finite‐element solutions using the extrapolation method, Electron. Commun. Jpn., 38, 47-69 (1986)
[13] Maan, F. S.; Querin, O. M.; Barton, D. C., Extension of the fixed grid finite element method to eigenvalue problems, Adv. Eng. Software, 607, 617-638 (2007)
[14] Meguro, K.; Tagel-Din, H., Applied Element Method for Structural Analysis: Theory and Application for Linear Materials (2000), Japan Society of Civil Engineers: Japan Society of Civil Engineers Japan
[15] Merta, M.; Zapletal, J.; Brzobohaty, T.; Markopoulos, A.; Riha, L.; Cermak, M.; Hapla, V.; Horak, D.; Pospisil, L.; Vasatova, A., Numerical libraries solving large-scale problems developed at IT4Innnovations research programme supercomputing for industry, Perspect. Sci., 7, 140-150 (2016)
[16] Miyamura, T.; Akiba, H.; Hori, M., Large-scale seismic response analysis of super-high-rise steel building considering soil-structure interaction, Int. J. High-Rise Build., 4, 75-83 (2015)
[17] Mohammad, D. R.A.; Khan, N. U.; Ramamurti, V., On the role of Rayleigh damping, J. Sound Vib., 185, 207-218 (1995)
[18] Moita, J. S.; Araújo, A. L.; Martins, P.; Mota Soares, C. M.; Mota Soares, C. A., A finite element model for the analysis of viscoelastic sandwich structures, Comput. Struct., 1889, 1874-1881 (2011)
[19] Nguyen-Xuan, H., A polygonal finite element method for plate analysis, Comput. Struct., 188, 45-62 (2017)
[20] Nuseir, A.; Al-Hasoon, A., Power series solution for nonlinear systems of partial differential equations, Appl. Math. Sci., 6, 5147-5159 (2012) · Zbl 1262.35076
[21] Onate, E.; Rojek, J., Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Eng., 3087, 3128-3193 (2004) · Zbl 1079.74646
[22] Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L., Improved accuracy for finite element structural analysis via an integrated force method, Comput. Struct., 521, 542-545 (1992)
[23] Pitarresi, J. M.; Manolis, G. D., The temporal finite element method in structural dynamics, Comput. Struct., 41, 647-655 (1991) · Zbl 0850.73030
[24] Rao, C. R.; Touternburg, H.; Heumann, C., Linear Models and Generalizations (2008), Springer-Verlag Berlin Heidelberg
[25] Ritz, W., Über eine neue Methode zur Lösung gewisser Probleme der math-ematischen Physik, J. für die Reine Angewandte Math. (Crelle’s J.), 1, 61-135 (1909)
[26] Rudolphi, T. J.; Lohmar, W., A combined boundary and finite element implementation for axisymmetric thermoelasticity, Adv. Bound. Element Methods, 379, 387 (1988)
[27] Schellbach, K. H., Probleme der Variationsrechnung, Crelle’s J. Diereine Angew. Math., 41, 293-363 (1851)
[28] Shang, H. Y.; Machado, R. D.; Abdalla Filho, J. E., Dynamic analysis of Euler-Bernoulli beam problems using the generalized finite element method, Comput. Struct., 173, 109-122 (2016)
[29] Shirkol, A. I.; Nasar, T., Coupled boundary element method and finite element method for hydroelastic analysis of floating plate, J. Ocean Eng. Sci., 3, 19-37 (2018)
[30] Stark, S.; Roth, S.; Neumeister, P.; Balke, H., Modifications of the Newton-Raphson method for finite element simulations in ferroelectroelasticity, Int. J. Solids Struct., 50, 773-780 (2013)
[31] Stein, E., History of the finite element method – mathematics meets mechanics - Part I: engineering developments. The history of theoretical, Mater. Comput. Mech., 399-442 (2014) · Zbl 1325.01010
[32] Strutt, J. W., The Theory of Sound (1877), London
[33] Tschuchnigg, F.; Schweiger, H. F.; Sloan, S. W., Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: back analyses of a case history, Comput. Geotech., 70, 178-189 (2015)
[34] Turner, M. J.; Clough, R. W.; Martin, H. C.; Topp, L. J., Stiffness and deflection analysis of complex structures, J. Aeronaut. Sci., 23, 805-823 (1956) · Zbl 0072.41003
[35] Yu, S. H.; Houlsby, G. T., A new finite element formulation for one-dimensional analysis of elastic-plastic materials, Comput. Geotech., 259, 241-256 (1990)
[36] Zienkiewicz, O.; Cheung, Y., The Finite Element Method (1967), McGraw-Hill · Zbl 0189.24902
[37] Zienkiewicz, O.; Taylor, R., The Finite Element Method (2000), Butterworth-Heinemann · Zbl 0991.74002
[38] Zona, A.; Ranzi, G., Finite element models for nonlinear analysis of steel-concrete composite beams with partial interaction in combined bending and shear, Finite Elem. Anal. Des., 147, 98-118 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.