# zbMATH — the first resource for mathematics

On a conjecture of Mordell. (English) Zbl 1452.11030
The well-known Mordell’s conjecture states that if $$x+y\sqrt{p}$$ is the fundamental unit of $$\mathbb{Q}(\sqrt{p})$$ for a prime $$p$$ congruent to $$3$$ modulo $$4$$, then $$p$$ does not divide $$y$$. In other words, Mordell’s conjecture predicts that $$p$$ does not divide $$y$$ where $$(x,y)$$ is the fundamental solution to the equation $$x^2-py^2=1$$, when $$p \equiv 3 \pmod 4$$.
In the paper under review, the authors prove the following result. It is an equivalent criterion for non-divisibility of $$y$$ by $$p$$.
Theorem 1. Let $$x+y\sqrt{p}$$ denote the fundamental unit of the real quadratic field $$\mathbb{Q}(\sqrt{p})$$, where $$p$$ is a prime congruent to $$3$$ modulo $$4$$. Then $$p$$ divides $$y$$ if and only if $$p$$ divides $$h_{l/2-1}$$, where $$h_i$$ is the denominator of the $$i$$-th convergent of the continued fraction expansion of $$\sqrt{p}$$.
As a consequence, Theorem 1 allows the authors to confirm that Mordell’s conjecture holds when the regular continued fraction expansion of $$\sqrt{p}$$ has period length $$2, 4, 6,$$ or $$8$$. The proofs of their results purely rely on a clever combination of the properties of continued fractions and elementary techniques in number theory.

##### MSC:
 11D09 Quadratic and bilinear Diophantine equations 11A55 Continued fractions 11J70 Continued fractions and generalizations 11R11 Quadratic extensions 11R27 Units and factorization
##### Keywords:
continued fraction; period; fundamental unit
Full Text:
##### References:
  N.C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic fields, Ann. of Math. (2) 56 (1952), 479-493. @articleAAC, MRKEY = MR49948, AUTHOR = Ankeny, N. C. and Artin, E. and Chowla, S., TITLE = The class-number of real quadratic number fields, JOURNAL = Ann. of Math. (2), FJOURNAL = Annals of Mathematics. Second Series, VOLUME = 56, YEAR = 1952, PAGES = 479-493, ISSN = 0003-486X, MRCLASS = 10.0X, MRNUMBER = 49948, MRREVIEWER = G. Hochschild, DOI = 10.2307/1969656, URL =, · Zbl 0049.30605  B.D. Beach, H.C. Williams and C.R. Zarnke, Some computer results on units in quadratic and cubic fields, pp. 609-648 in Proc. 25th Summer Meeting Can. Math. Congress (Lakehead Univ., Ontario, 1971) (1971). @inproceedingsBeach, MRKEY = MR0337887, AUTHOR = Beach, B. D. and Williams, H. C. and Zarnke, C. R., TITLE = Some computer results on units in quadratic and cubic fields, BOOKTITLE = Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), PAGES = 609-648, YEAR = 1971, MRCLASS = 12A45 (12-04), MRNUMBER = 0337887, MRREVIEWER = Harvey Cohn,  V. Bouniakowsky, Nouveaux theorèmes relatifs à la distinction des nombres premiers et à la décomposition des entiers en facteurs, Mém. Acad. Sc. St. Pétersbourg. 6 (1857), 305-329.  P. Chowla and S. Chowla, Problems on periodic simple continued fractions, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 3745. @articleCC, MRKEY = MR319942, AUTHOR = Chowla, P. and Chowla, S., TITLE = Problems on periodic simple continued fractions, JOURNAL = Proc. Nat. Acad. Sci. U.S.A., FJOURNAL = Proceedings of the National Academy of Sciences of the United States of America, VOLUME = 69, YEAR = 1972, PAGES = 3745, ISSN = 0027-8424, MRCLASS = 12A50 (10F20 12A25), MRNUMBER = 319942, MRREVIEWER = William W. Adams, DOI = 10.1073/pnas.69.12.3745, URL =,  H. Davenport, The higher arithmetic, Cambridge University Press, (2008). @bookD, MRKEY = MR2462408, AUTHOR = Davenport, H., TITLE = The higher arithmetic, EDITION = Eighth, NOTE = An introduction to the theory of numbers, With editing and additional material by James H. Davenport, PUBLISHER = Cambridge University Press, Cambridge, YEAR = 2008, PAGES = x+239, ISBN = 978-0-521-72236-0, MRCLASS = 11-01, MRNUMBER = 2462408, DOI = 10.1017/CBO9780511818097, URL =,  E.P. Golubeva, Quadratic irrationalities with a fixed length of the period of continued fraction expansion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), 5-30, 172. In Russian, translated in J. Math. Sci. 70:6 (1994), 2059-2076. @articleG1, MRKEY = MR1164213, AUTHOR = Golubeva, E. P., TITLE = Quadratic irrationalities with a fixed length of the period of continued fraction expansion, JOURNAL = Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), FJOURNAL = Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI), VOLUME = 196, YEAR = 1991, NUMBER = Modul. Funktsii Kvadrat. Formy. 2, PAGES = 5-30, 172, ISSN = 0373-2703, MRCLASS = 11J70 (11E41 11R29), MRNUMBER = 1164213, MRREVIEWER = Jaroslav Hančl, DOI = 10.1007/BF02111323, URL =, · Zbl 0835.11024  E.P. Golubeva, Class numbers of real quadratic fields of discriminant $$4p$$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 204 (1993), Anal. Teor. Chisel i Teor. Funktsii. 11, 11-36, 167. @articleG2, MRKEY = MR1216864, AUTHOR = Golubeva, E. P., TITLE = Class numbers of real quadratic fields of discriminant $$4p$$, JOURNAL = Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), FJOURNAL = Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI), VOLUME = 204, YEAR = 1993, NUMBER = Anal. Teor. Chisel i Teor. Funktsiĭ. 11, PAGES = 11-36, 167, ISSN = 0373-2703, MRCLASS = 11R29 (11A55 11R11 11R47), MRNUMBER = 1216864, MRREVIEWER = Jerzy Kaczorowski, DOI = 10.1007/BF02366457, URL =, · Zbl 0814.11023  R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction expansion, J. Number Theory 90 (2001), 143-153. @articleHash, MRKEY = MR1850878, AUTHOR = Hashimoto, Ryūta, TITLE = Ankeny-Artin-Chowla conjecture and continued fraction expansion, JOURNAL = J. Number Theory, FJOURNAL = Journal of Number Theory, VOLUME = 90, YEAR = 2001, NUMBER = 1, PAGES = 143-153, ISSN = 0022-314X, MRCLASS = 11R27 (11A55 11R11 11R18), MRNUMBER = 1850878, MRREVIEWER = Roland Quême, DOI = 10.1006/jnth.2001.2652, URL =, · Zbl 0987.11066  O. Hemer, Notes on the Diophantine equation $$y^2 - k=x^3$$, Ark. Mat. 3 (1954), 67-77. @articleHemer, MRKEY = MR61115, AUTHOR = Hemer, Ove, TITLE = Notes on the Diophantine equation $$y^2-k=x^3$$, JOURNAL = Ark. Mat., FJOURNAL = Arkiv för Matematik, VOLUME = 3, YEAR = 1954, PAGES = 67-77, ISSN = 0004-2080, MRCLASS = 10.0X, MRNUMBER = 61115, MRREVIEWER = Ivan Niven, DOI = 10.1007/BF02589282, URL =, · Zbl 0055.03607  A.M. Legendre, Essai sur la theorie des nombres, Paris (1797), https://archive.org/details/essaitheorienomb00legerich. @bookLeg, MRKEY = MR2859036, AUTHOR = Legendre, Adrien-Marie, TITLE = Essai sur la théorie des nombres, SERIES = Cambridge Library Collection, NOTE = Reprint of the second (1808) edition, PUBLISHER = Cambridge University Press, Cambridge, YEAR = 2009, PAGES = ii+xxiv+518, ISBN = 978-1-108-00173-1, MRCLASS = 01A75, MRNUMBER = 2859036, DOI = 10.1017/CBO9780511693199, URL =,  L.J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144. @articleMor1, MRKEY = MR118699, AUTHOR = Mordell, L. J., TITLE = On a pellian equation conjecture, JOURNAL = Acta Arith., FJOURNAL = Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, VOLUME = 6, YEAR = 1960, PAGES = 137-144, ISSN = 0065-1036, MRCLASS = 10.00, MRNUMBER = 118699, MRREVIEWER = L. Carlitz, DOI = 10.4064/aa-6-2-137-144, URL =, · Zbl 0093.04305  L.J. Mordell, On a Pellian equation conjecture II, J. London Math. Soc. 36 (1961), 282-288. @articleMor, MRKEY = MR126411, AUTHOR = Mordell, L. J., TITLE = On a Pellian equation conjecture. II, JOURNAL = J. London Math. Soc., FJOURNAL = The Journal of the London Mathematical Society, VOLUME = 36, YEAR = 1961, PAGES = 282-288, ISSN = 0024-6107, MRCLASS = 10.10, MRNUMBER = 126411, MRREVIEWER = L. Carlitz, DOI = 10.1112/jlms/s1-36.1.282, URL =, · Zbl 0122.05503  O. Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B.G. Teubner Verlagsgesellschaft, Stuttgart (1954). @bookPerron, MRKEY = MR0064172, AUTHOR = Perron, Oskar, TITLE = Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, NOTE = 3te Aufl, PUBLISHER = B. G. Teubner Verlagsgesellschaft, Stuttgart, YEAR = 1954, PAGES = vi+194, MRCLASS = 40.0X, MRNUMBER = 0064172, MRREVIEWER = H. S. Wall,  A.J. van der Poorten, H.J.J. te Riele and H.C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than $$100\, 000\, 000\, 000$$; Math. Comp. 70 (2001), 1311-1328. @articlePoorten, MRKEY = MR1709160, AUTHOR = van der Poorten, A. J. and te Riele, H. J. J. and Williams, H. C., TITLE = Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than $$100\,000\,000\,000$$, JOURNAL = Math. Comp., FJOURNAL = Mathematics of Computation, VOLUME = 70, YEAR = 2001, NUMBER = 235, PAGES = 1311-1328, ISSN = 0025-5718, MRCLASS = 11Y40 (11R11 11R27), MRNUMBER = 1709160, MRREVIEWER = François Morain, DOI = 10.1090/S0025-5718-00-01234-5, URL =, · Zbl 0987.11065  A.J. van der Poorten, H.J.J. te Riele and H.C. Williams, Corrigenda and addition to: “Computer Verification of the Ankeny-Artin-Chowla conjecture for all primes less than $$100 000 000 000$$”, Math. Comp. 72 (2003), 521-523. @articlePoorten2, MRKEY = MR1933835, AUTHOR = Van Der Poorten, A. J. and te Riele, H. J. J. and Williams, H. C., TITLE = Corrigenda and addition to: “Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than $$100\,000\,000\,000$$” [Math. Comp. 70 (2001), no. 235, 1311-1328; MR1709160 (2001j:11125)], JOURNAL = Math. Comp., FJOURNAL = Mathematics of Computation, VOLUME = 72, YEAR = 2003, NUMBER = 241, PAGES = 521-523, ISSN = 0025-5718, MRCLASS = 11Y40 (11R11 11R27), MRNUMBER = 1933835, DOI = 10.1090/S0025-5718-02-01527-2, URL =, · Zbl 0987.11065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.