×

zbMATH — the first resource for mathematics

Implementation of compressible porous-fluid coupling method in an aerodynamics and aeroacoustics code. II: Turbulent flow. (English) Zbl 1433.76055
Summary: Due to the potential advantages and applications of porous materials in aerodynamic and aeroacoustic applications, a porous-fluid coupling solver under compressible turbulence circumstances is of significance for CFD researchers. In this paper, a porous-fluid coupling method for compressible turbulence problems based on a \(k - \omega\) model is proposed and implemented in the finite-volume-based in-house code Aeroacoustic and Aerodynamic Investigation Simulator (AAISIM). At the porous-fluid interface, the conservation equations of mass, energy, turbulent kinetic energy, specific dissipation rate and isentropic condition are solved to balance the flux through the interface. The stress jump condition and turbulence wall function are also employed for the treatment of the permeable wall. For the Beavers and Joseph’s problem, the current results show good agreement with previous Direct Numerical Simulation results for a Reynolds number of 5500. Flat plates with a porous section in the middle and at the trailing edge are simulated and compared against experimental data thus providing a validation of this porous-fluid coupling method.
For Part I of this series, see [the first author et al., ibid. 364, Article ID 124682, 19 p. (2020; Zbl 1433.76152)].
Reviewer: Reviewer (Berlin)
MSC:
76F50 Compressibility effects in turbulence
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76G25 General aerodynamics and subsonic flows
76Q05 Hydro- and aero-acoustics
76S05 Flows in porous media; filtration; seepage
80A19 Diffusive and convective heat and mass transfer, heat flow
76D05 Navier-Stokes equations for incompressible viscous fluids
76F10 Shear flows and turbulence
Software:
AAISIM; AUSM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Li, Z.; Zhang, H.; Liu, Y.; McDonough, J. M., Implementation of compressible porous-fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow, Appl. Math. Comput., 364, 124682 (2020) · Zbl 1433.76152
[2] Vafai, K.; Tien, C., Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transf., 24, 2, 195-203 (1981) · Zbl 0464.76073
[3] Koch, D. L.; Brady, J. F., Dispersion in fixed beds, J. Fluid Mech., 154, 399-427 (1985) · Zbl 0592.76130
[4] Gunn, D., Theory of axial and radial dispersion in packed beds, Trans. Inst. Chem. Eng. Chem. Eng., 47, 10, T351 (1969)
[5] Hsu, C.; Cheng, P., Thermal dispersion in a porous medium, Int. J. Heat Mass Transf., 33, 8, 1587-1597 (1990) · Zbl 0703.76079
[6] Bear, J., Dynamics of Fluids in Porous Media (2013), Courier Corporation
[7] Mickley, H.; Smith, K.; Korchak, E., Fluid flow in packed beds, Chem. Eng. Sci., 20, 3, 237-246 (1965)
[8] Van der Merwe, D.; Gauvin, W., Velocity and turbulence measurements of air flow through a packed bed, AIChE J., 17, 3, 519-528 (1971)
[9] Edwards, M.; Richardson, J., Gas dispersion in packed beds, Chem. Eng. Sci., 23, 2, 109-123 (1968)
[10] Gunn, D.; De Souza, J., Heat transfer and axial dispersion in packed beds, Chem. Eng. Sci., 29, 6, 1363-1371 (1974)
[11] Levec, J.; Carbonell, R., Longitudinal and lateral thermal dispersion in packed beds. Part I: Theory, AIChE J., 31, 4, 581-590 (1985)
[12] Masuoka, T.; Takatsu, Y., Turbulence model for flow through porous media, Int. J. Heat Mass Transf., 39, 13, 2803-2809 (1996) · Zbl 0964.76547
[13] Antohe, B.; Lage, J., A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transf., 40, 13, 3013-3024 (1997) · Zbl 0962.76532
[14] Getachew, D.; Minkowycz, W.; Lage, J., A modified form of the k-ε model for turbulent flows of an incompressible fluid in porous media, Int. J. Heat Mass Transf., 43, 16, 2909-2915 (2000) · Zbl 1094.76529
[15] Pinson, F.; Grégoire, O.; Simonin, O., k-ε macro-scale modeling of turbulence based on a two scale analysis in porous media, Int. J. Heat Fluid Flow, 27, 5, 955-966 (2006)
[16] Nakayama, A.; Kuwahara, F., A macroscopic turbulence model for flow in a porous medium, J. Fluids Eng., 121, 2, 427-433 (1999)
[17] Braga, E. J.; de Lemos, M. J., Turbulent natural convection in a porous square cavity computed with a macroscopic κ-ε model, Int. J. Heat Mass Transf., 47, 26, 5639-5650 (2004) · Zbl 1121.76339
[18] de Lemos, M. J., Numerical simulation of turbulent combustion in porous materials, Int.s Commun. Heat Mass Transf., 36, 10, 996-1001 (2009)
[19] Wang, S.; Mujumdar, A., A comparative study of five low Reynolds number k-ε models for impingement heat transfer, Appl. Therm. Eng., 25, 1, 31-44 (2005)
[20] Yu, P.; Zeng, Y.; Lee, T.; Bai, H.; Low, H., Wake structure for flow past and through a porous square cylinder, Int. J. Heat Fluid Flow, 31, 2, 141-153 (2010)
[21] Yu, P.; Lee, T. S.; Zeng, Y.; Low, H. T., A numerical method for flows in porous and homogenous fluid domains coupled at the interface by stress jump, Int. J. Numer. Methods Fluids, 53, 11, 1755-1775 (2007) · Zbl 1370.76110
[22] Ochoa-Tapia, J. A.; Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development, Int. J. Heat Mass Transf., 38, 14, 2635-2646 (1995) · Zbl 0923.76320
[23] Ochoa-Tapia, J. A.; Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment, Int. J. Heat Mass Transf., 38, 14, 2647-2655 (1995) · Zbl 0923.76320
[24] Martin, A.; Zhang, H.; Tagavi, K. A., An introduction to the derivation of surface balance equations without the excruciating pain, Int. J. Heat Mass Transf., 115, 992-999 (2017)
[25] Weng, H.; Martin, A., Development of a universal solver and its application to ablation problems, Proceedings of the Forty-Seventh AIAA Thermophysics Conference, 3355 (2017)
[26] Liu, H.; Wei, J., On the role of surface permeability for the control of flow around a circular cylinder., J. Vibroeng., 18, 8 (2016)
[27] Liu, H.; Wei, J.; Qu, Z., Prediction of aerodynamic noise reduction by using open-cell metal foam, J. Sound Vib., 331, 7, 1483-1497 (2012)
[28] Arcondoulis, E.; Liu, Y.; Li, Z.; Yang, Y.; Wang, Y.; Li, W., The design and noise characteristics of a structured porous coated cylinder in uniform flow, Proceedings of the AIAA/CEAS Aeroacoustics Conference, 2963 (2018)
[29] Arcondoulis, E. J.; Liu, Y.; Li, Z.; Yang, Y.; Wang, Y., Structured porous material design for passive flow and noise control of cylinders in uniform flow, Materials, 12, 18, 2905 (2019)
[30] Rubio Carpio, A.; Avallone, F.; Ragni, D., On the role of the flow permeability of metal foams on trailing edge noise reduction, Proceedings of the AIAA/CEAS Aeroacoustics Conference, 2964 (2018)
[31] Zhou, B. Y.; Gauger, N. R.; Koh, S. R.; Meinke, M. H.; Schroeder, W., On the adjoint-based control of trailing-edge turbulence and noise minimization via porous material, Proceedings of the Twenty-First AIAA/CEAS Aeroacoustics Conference, 2530 (2015)
[32] Geyer, T.; Sarradj, E.; Fritzsche, C., Measurement of the noise generation at the trailing edge of porous airfoils, Exp. Fluids, 48, 2, 291-308 (2010)
[33] Revell, J.; Revell, J.; Kuntz, H.; Balena, F.; Horne, C.; Storms, B.; Dougherty, R.; Kuntz, H.; Balena, F.; Horne, C., Trailing-edge flap noise reduction by porous acoustic treatment, Proceedings of the Third AIAA/CEAS Aeroacoustics Conference, 1646 (1997)
[34] Breugem, W. P., The influence of wall permeability on laminar and turbulent flows: theory and simulations (2005.), TU Delft, Delft University of Technology, Ph.D. thesis
[35] Showkat Ali, S. A.; Azarpeyvand, M.; Szöke, M.; Ilário da Silva, C. R., Boundary layer flow interaction with a permeable wall, Phys. Fluids, 30, 8, 085111 (2018)
[36] Showkat Ali, S. A.; Azarpeyvand, M.; da Silva, C. R.I., Trailing-edge flow and noise control using porous treatments, J. Fluid Mech., 850, 83-119 (2018) · Zbl 1415.76618
[37] Li, Z., Data-Driven Adaptive Reynolds-Averaged Navier-Stokes k-ω Models for Turbulent Flow-Field Simulations (2017.), Univeristy of Kentucky, Ph.D. thesis
[38] Wilcox, D. C., Formulation of the \(k - \omega\) turbulence model revisited, AIAA J., 46, 11, 2823-2838 (2008)
[39] Mößner, M.; Radespiel, R., Modelling of turbulent flow over porous media using a volume averaging approach and a Reynolds stress model, Comput. Fluids, 108, 25-42 (2015) · Zbl 1390.76199
[40] Sondak, D. L., Wall functions for the k-ϵ turbulence model in generalized nonorthogonal curvilinear coordinates (1992), Iowa State University, Ph.D. thesis
[41] Silva, R. A.; De Lemos, M. J., Turbulent flow in a composite channel, Int. Commun. Heat Mass Transf., 38, 8, 1019-1023 (2011)
[42] Liou, M.-S., A sequel to AUSM, part II: AUSM+-up for all speeds, J. Comput. Phys., 214, 1, 137-170 (2006) · Zbl 1137.76344
[43] Naito, H.; Fukagata, K., Numerical simulation of flow around a circular cylinder having porous surface, Phys. Fluids, 24, 11, 117102 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.