zbMATH — the first resource for mathematics

Abductive reasoning on molecular interaction maps. (English) Zbl 1429.68265
Kóczy, László T. (ed.) et al., Interactions between computational intelligence and mathematics. Cham: Springer. Stud. Comput. Intell. 758, 43-56 (2018).
Summary: Metabolic networks, formed by a series of metabolic pathways, are made of intra-cellular and extracellular reactions that determine the biochemical properties of a cell, and by a set of interactions that guide and regulate the activity of these reactions. Cancer, for example, can sometimes appear in a cell as a result of some pathology in a metabolic pathway. Most of these pathways are formed by an intricate and complex network of chain reactions, and are often represented in Molecular Interaction Maps (MIM), a graphical, human readable form of the cell cycle checkpoint pathways. In this paper, we present a logic, called Molecular Interaction Logic, which semantically characterizes MIMs and, moreover, allows us to apply deductive and abductive reasoning on MIMs in order to find inconsistencies, answer queries and infer important properties about those networks.
For the entire collection see [Zbl 1407.68038].
68T27 Logic in artificial intelligence
92C42 Systems biology, networks
Full Text: DOI
[1] Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abductive proof-procedure. In: AI*IA’05, p. 135147 (2005) · Zbl 1155.68517
[2] Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. Bioinformatics 20 (suppl 1), i15-i22 (2004)
[3] Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293-322. Plenum Press (1978)
[4] Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Logical model for molecular interactions maps. In: Logical Modeling of Biological Systems, pp. 93-123. Wiley, New York (2014)
[5] Demolombe, R., Fariñas del Cerro, L., Obeid, N.: Translation of first order formulas into ground formulas via a completion theory. J. Appl. Logic (), to appear · Zbl 1436.03100
[6] Demolombe, R., Fariñas del Cerro, L.: An inference rule for hypothesis generation. In: IJCAI’91 (1991) · Zbl 0745.68088
[7] Demolombe, R., Fariñas del Cerro, L.: Information about a given entity: from semantics towards automated deduction. J. Logic Comput. 20(6), 1231-1250 (2010) · Zbl 1222.68360
[8] Denecker, M., Kakas, A.: Abduction in logic programming. In: Computational Logic: Logic Programming and Beyond, pp. 402-436 (2002) · Zbl 1012.68503
[9] Een, N., Srensson, N.: An extensible sat-solver. In: SAT’03, pp. 502-518 (2003) · Zbl 1204.68191
[10] Erwig, M., Walkingshaw, E.: Causal reasoning with neuron diagrams. In: VLHCC ’10, pp. 101-108 (2010)
[11] Fariñas del Cerro, L., Herzig, A.: Contingency-based equilibrium logic. In: LPNMR’11, pp. 223-228 (2011) · Zbl 1327.03015
[12] Fariñas del Cerro, L., Inoue, K. (eds.): Logical Modeling of Biological Systems. Wiley, New York (2014) · Zbl 1294.92001
[13] Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.: Repair and prediction (under inconsistency) in large biological networks with answer set programming. In: KR’10 (2010)
[14] Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theory Pract. Logic Program. 11(2-3), 323-360 (2011) · Zbl 1220.68036
[15] Glorian, V., Maillot, G., Poles, S., Iacovoni, J.S., Favre, G., Vagner, S.: Hur-dependent loading of mirna risc to the mrna encoding the ras-related small gtpase rhob controls its translation during uv-induced apoptosis. Cell Death Differ. 18(11), 1692-1701 (2011)
[16] Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2-3), 301-353 (1992) · Zbl 0805.68105
[17] Jackson, P.: Computing prime implicates incrementally. In: CADE’92, pp. 253-267 (1992) · Zbl 0925.03054
[18] Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J. Symbolic Comput. 9, 185-206 (1990) · Zbl 0704.68100
[19] Kohn, K.W., Pommier, Y.: Molecular interaction map of the p53 and mdm2 logic elements, which control the off-on swith of p53 response to dna damage. Biochem. Biophys. Res. Commun. 331(3), 816-27 (2005)
[20] Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell. 17(1), 1-13 (2006)
[21] Lee, W., Kim, D., Lee, M., Choi, K.: Identification of proteins interacting with the catalytic subunit of pp2a by proteomics. Proteomics 7(2), 206-214 (2007)
[22] Muggleton, S., Bryant, C.H.: Theory completion using inverse entailment. In: ILP’00, pp. 130-146 (2000) · Zbl 0994.68623
[23] Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction system for consequence finding. AI Commun. 23(2-3), 183-203 (2010) · Zbl 1205.68362
[24] Nuffelen, B.V.: A-system: problem solving through abduction. BNAIC01 Sponsors 1, 591-596 (2001)
[25] Pei, H., Zhang, L., Luo, K., Qin, Y., Chesi, M., Fei, F., Bergsagel, P.L., Wang, L., You, Z., Lou, Z.: MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470(7332), 124-128 (2011)
[26] Pommier, Y., Sordet, O., Rao, V.A., Zhang, H., Kohn, K.W.: Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr. Pharm. Des. 11(22), 2855-72 (2005)
[27] Ray, O., Kakas, A.: ProLogICA: a practical system for abductive logic programming. In: Proceedings of the 11th International Workshop on Non-monotonic Reasoning, pp. 304-312 (2006)
[28] Ray, O., Whelan, K., King, R.: Logic-based steady-state analysis and revision of metabolic networks with inhibition. In: CISIS’10, pp. 661-666 (2010)
[29] Reiser, P.G., King, R.D., Kell, D.B., Muggleton, S., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electron. Trans. Artif. Intell. 5, 233-244 (2001)
[30] Rougny, A., Froidevaux, C., Yamamoto, Y., Inoue, K.: Analyzing SBGN-AF Networks Using Normal Logic Programs. In: Logical Modeling of Biological Systems, pp. 44-55. Wiley, New York (2014) · Zbl 1402.92209
[31] van Iersel, M.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.