zbMATH — the first resource for mathematics

Spectral three-term constrained conjugate gradient algorithm for function minimizations. (English) Zbl 1442.65100
Summary: In this work, we tend to deal within the field of the constrained optimization methods of three-term Conjugate Gradient (CG) technique which is primarily based on Dai-Liao (DL) formula. The new proposed technique satisfies the conjugacy property and the descent conditions of Karush-Kuhn-Tucker (K.K.T.). Our planned constrained technique uses the robust Wolfe line search condition with some assumptions. We tend to prove the global convergence property of the new planned technique. Numeral comparisons for (30-thirty) constrained optimization issues make sure the effectiveness of the new planned formula.
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
90C52 Methods of reduced gradient type
Full Text: DOI
[1] Rao, S. S., Engineering Optimization Theory and Practice (2009), Hoboken, New Jersey, Canada: John Wiley & Sons Inc., Hoboken, New Jersey, Canada
[2] Hestenes, M. R.; Stiefel, E., Techniques of conjugate gradients for solving linear system, Journal of Research of the National Bureau of Standards, 49, 409-436 (1952) · Zbl 0048.09901
[3] Fletcher, R.; Reeves, C. M., Function minimization by conjugate gradients, The Computer Journal, 7, 149-154 (1964) · Zbl 0132.11701
[4] Polak, E.; Ribière, G., Note sur la convergence de méthodes de directions conjuguées, ESAIM, Mathematical Modeling and Numerical Analysis, 3, 35-43 (1969) · Zbl 0174.48001
[5] Liu, Y.; Storey, C., Efficient generalized conjugate gradient algorithms, part1: theory, Journal of Optimization Theory and Applications, 69, 129-137 (1991) · Zbl 0702.90077
[6] Dai, Y.; Liao, L. Z., New conjugacy conditions and related nonlinear conjugate gradient methods, Applied Mathematical Optimization, 43, 1, 87-101 (2001) · Zbl 0973.65050
[7] Wolfe, P., Convergence condition for ascent methods. II: some corrections, SIAM Review, 13, 185-188 (1971) · Zbl 0216.26901
[8] Liveries, I. E.; Pintelas, P., A descent Dai-Liao conjugate gradient method based on a modified secant equation and its global convergence, ISRN Computational Mathematics, 2012 (2012) · Zbl 1245.65067
[9] Babaie-Kafaki, S.; Ghanbari, R., The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices, European Journal of Operational Research, 234, 3, 625-630 (2014) · Zbl 1304.90216
[10] Arazm, M. R.; Babaie-Kafaki, S.; Ghanbari, R., An extended Dai-Liao conjugate gradient method with global convergence for nonconvex functions, Glasnik Matematicki, 52, 2, 361-375 (2017) · Zbl 1380.65099
[11] Babaie-Kafaki, S.; Ghanbari, R., A descent family of Dai-Liao conjugate gradient methods, Optimization Methods and Software, 29, 3, 583-591 (2014) · Zbl 1285.90063
[12] Waziri, M. Y.; Ahmed, K.; Sabi’u, J., A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations, Arabian Journal of Mathematics (2019)
[13] Zhang, J.; Xiao, Y.; Wei, Z., Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization, Mathematical Problems in Engineering, 2009 (2009) · Zbl 1184.65066
[14] Freund Robert, M., Optimality Condition for Constrained Optimization Problems (2004), Massachusetts Institute of Technology (K.K.T.)
[15] Bertsekas, D. P., Nonlinear Programming (1999), Athena Scientific
[16] Li, G.; Tang, C.; Wei, Z., New conjugacy condition and related new conjugate gradient techniques for unconstrained optimization, Journal of Computation and Applied Mathematics, 202, 523-539 (2007) · Zbl 1116.65069
[17] Andrei, N., A modified Polak-Ribière -Polyak conjugate gradient algorithm for unconstrained optimization, Optimization, 60, 12, 1457-1471 (2011) · Zbl 1233.90255
[18] Babaie-Kafaki, S.; Ghanbari, R., An adaptive Hager-Zhang conjugate gradient technique, Filomat, 40, 3715-3723 (2016) · Zbl 1461.65125
[19] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear Programming: Theory and Algorithms (2006), John Wiley and Sons · Zbl 1140.90040
[20] Gottefred, B. S.; Weisman, J., Introduction to Optimization Theory (1973), Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ
[21] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Mathematical Programming, 91, 2, 201-213 (2002) · Zbl 1049.90004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.