zbMATH — the first resource for mathematics

Heat and electricity market coordination: a scalable complementarity approach. (English) Zbl 1441.91051
Summary: The large penetration of stochastic and non-dispatchable renewable energy sources increases the need for operational flexibility in power systems. Flexibility can be unlocked by aligning the existing interactions and synergies between heat and power systems. However, in the current sequential order of heat and electricity market clearings, the heat market is myopic to its interactions with the electricity market. This paper designs a heat market, aimed at achieving the optimal coordination of heat and power systems while respecting the current market regulations. The proposed electricity-aware heat market yields a soft coordination between heat and power systems by endogenously modeling their interactions in the day-ahead heat market clearing. The proposed market framework requires to solve a hierarchical optimization problem under uncertainty, which can be computationally challenging in large-scale energy systems with many scenarios. To resolve this potential scalability issue, this paper develops an augmented regularized Benders decomposition algorithm. The performance of the proposed market framework is compared against the fully integrated and sequential market frameworks using an ex-post out-of-sample simulation. This comparison reveals that there is a significant room for improvement in the cost-effective operation of the overall energy system. In particular, the proposed electricity-aware heat market framework provides a trade-off between the sequential and fully integrated market frameworks by significantly reducing the inefficiencies in both heat and electricity systems while respecting the current sequence of clearing heat and electricity markets.
91B74 Economic models of real-world systems (e.g., electricity markets, etc.)
90C05 Linear programming
90C15 Stochastic programming
Full Text: DOI
[1] Abdollahi, E.; Wang, H.; Lahdelma, R., Parametric optimization of long-term multi-area heat and power production with power storage, Applied Energy, 235, 802-812 (2019)
[2] Ackermann, T., Wind Power in Power Systems (2005), John Wiley & Sons
[3] Bach, B.; Werling, J.; Ommen, T.; Münster, M.; Morales, J. M.; Elmegaard, B., Integration of large-scale heat pumps in the district heating systems of greater copenhagen, Energy, 107, 321-334 (2016)
[4] Benders, J. F., Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, 4, 1, 238-252 (1962) · Zbl 0109.38302
[5] Bertsekas, D. P.; Sandell, N. R., Estimates of the duality gap for large-scale separable nonconvex optimization problems, Proceedings of the 21st IEEE conference on decision and control, 782-785 (1982)
[6] Bonnans, J.-F.; Gilbert, J. C.; Lemaréchal, C.; Sagastizábal, C. A., Numerical Optimization: Theoretical and Practical Aspects (2006), Springer Science & Business Media · Zbl 1108.65060
[7] Bukhsh, W. (2015). Data for stochastic multiperiod optimal power flow problem. http://sites.google.com/site/datasmopf/.
[8] Bukhsh, W. A.; Zhang, C.; Pinson, P., An integrated multiperiod opf model with demand response and renewable generation uncertainty, IEEE Transactions on Smart Grid, 7, 3, 1495-1503 (2016)
[9] Byeon, G., & Van Hentenryck, P. (2019a). Benders decomposition for a class of mathematical programs with constraints on dual variables. In arxiv preprint arxiv:1902.04375.
[10] To be published.
[11] Castillo, E.; Mínguez, R.; Conejo, A.; Garcia-Bertrand, R., Decomposition techniques in mathematical programming (2006), Springer
[12] Chen, R.; Paschalidis, I. C.; Caramanis, M. C.; Andrianesis, P., Learning from past bids to participate strategically in day-ahead electricity markets, IEEE Transactions on Smart Grid, 10, 5, 5794-5806 (2019)
[13] Chen, X.; Kang, C.; O’Malley, M.; Xia, Q.; Bai, J.; Liu, C.; Li, H., Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implications, IEEE Transactions on Power Systems, 30, 4, 1848-1857 (2015)
[14] Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future, Nature, 488, 7411, 294-303 (2012)
[15] Cruz, J., Leader-follower strategies for multilevel systems, IEEE Transactions on Automatic Control, 23, 2, 244-255 (1978) · Zbl 0382.49009
[16] Dai, Y.; Chen, L.; Min, Y.; Mancarella, P.; Chen, Q.; Hao, J.; Xu, F., A general model for thermal energy storage in combined heat and power dispatch considering heat transfer constraints, IEEE Transactions on Sustainable Energy, 9, 4, 1518-1528 (2018)
[17] Darivianakis, G.; Georghiou, A.; Eichler, A.; Smith, R. S.; Lygeros, J., Scalability through decentralization: A robust control approach for the energy management of a building community, IFAC-PapersOnLine, 50, 1, 14314-14319 (2017)
[18] Gabriel, S. A.; Conejo, A. J.; Fuller, J. D.; Hobbs, B. F.; Ruiz, C., Complementarity modeling in energy markets (2012), Springer
[19] Gabriel, S. A.; Zhuang, J.; Egging, R., Solving stochastic complementarity problems in energy market modeling using scenario reduction, European Journal of Operational Research, 197, 3, 1028-1040 (2009) · Zbl 1176.90438
[20] Geoffrion, A. M., Generalized Benders decomposition, Journal of Optimization Theory and Applications, 10, 4, 237-260 (1972) · Zbl 0229.90024
[21] Kazempour, J.; Conejo, A. J., Strategic generation investment under uncertainty via Benders decomposition, IEEE Transactions on Power Systems, 27, 1, 424-432 (2012)
[22] Lahdelma, R.; Hakonen, H., An efficient linear programming algorithm for combined heat and power production, European Journal of Operational Research, 148, 1, 141-151 (2003) · Zbl 1037.90539
[23] Li, Z.; Wu, W.; Shahidehpour, M.; Wang, J.; Zhang, B., Combined heat and power dispatch considering pipeline energy storage of district heating network, IEEE Transactions on Sustainable Energy, 7, 1, 12-22 (2016)
[24] Li, Z.; Wu, W.; Wang, J.; Zhang, B.; Zheng, T., Transmission-constrained unit commitment considering combined electricity and district heating networks, IEEE Transactions on Sustainable Energy, 7, 2, 480-492 (2016)
[25] Loukarakis, E.; Mancarella, P., A sequential programming method for multi-energy districts optimal power flow, Proceedings of the IEEE manchester powertech, 1-6 (2017), IEEE
[26] Lund, H., Large-scale integration of wind power into different energy systems, Energy, 30, 13, 2402-2412 (2005)
[27] Lund, H.; Möller, B.; Mathiesen, B. V.; Dyrelund, A., The role of district heating in future renewable energy systems, Energy, 35, 3, 1381-1390 (2010)
[28] Madsen, H. (2015). Time series analysis. course notes. http://www.imm.dtu.dk/ hmad/time.series.analysis/assignments/index.html. · Zbl 1143.62053
[29] Maggioni, F.; Cagnolari, M.; Bertazzi, L., The value of the right distribution in stochastic programming with application to a newsvendor problem, Computational Management Science, 1-20 (2019)
[30] Meibom, P.; Hilger, K. B.; Madsen, H.; Vinther, D., Energy comes together in Denmark: The key to a future fossil-free Danish power system, IEEE Power Energy Magazine, 11, 5, 46-55 (2013)
[31] Meibom, P.; Kiviluoma, J.; Barth, R.; Brand, H.; Weber, C.; Larsen, H. V., Value of electric heat boilers and heat pumps for wind power integration, Wind Energy, 10, 4, 321-337 (2007)
[32] Mitridati, L., Kazempour, J., & Pinson, P. (2019). Heat and electricity market coordination: A scalable complementarity approach - Python code and online appendix. doi:10.5281/zenodo.2769456.
[33] Mitridati, L.; Pinson, P., Optimal coupling of heat and electricity systems: A stochastic hierarchical approach, Proceedings of the international conference on probabilistic methods applied to power syst. (pmaps) (2016), IEEE
[34] Mitridati, L.; Pinson, P., A Bayesian inference approach to unveil supply curves in electricity markets, IEEE Transactions on Power Systems, 33, 3, 2610-2620 (2018)
[35] Mitridati, L.; Taylor, J. A., Power systems flexibility from district heating networks, Proceedings of the power systems computation conference (pscc), 1-7 (2018), IEEE
[36] Morales, J. M.; Conejo, A. J.; Madsen, H.; Pinson, P.; Zugno, M., Integrating renewables in electricity markets (2013), Springer Science & Business Media
[37] Morales, J. M.; Pineda, S.; Conejo, A. J.; Carrion, M., Scenario reduction for futures market trading in electricity markets, IEEE Transactions on Power Systems, 24, 2, 878-888 (2009)
[38] Muñoz-Álvarez, D.; Bitar, E., Financial storage rights in electric power networks, Journal of Regulatory Economics, 52, 1, 1-23 (2017)
[39] Nasri, A.; Kazempour, J.; Conejo, A. J.; Ghandhari, M., Network-constrained AC unit commitment under uncertainty: a Benders decomposition approach, IEEE Transactions on Power Systems, 31, 1, 412-422 (2016)
[40] Nordpool (2018). Market data - consumption. https://www.nordpoolgroup.com/Market-data1/Power-system-data/Consumption1/Consumption/ALL/Hourly1/?view=table.
[41] Nordpool (2019). Elspot - single hourly order. https://www.nordpoolgroup.com/trading/Day-ahead-trading/Order-types/Hourly-bid/.
[42] Ordoudis, C.; Delikaraoglou, S.; Pinson, P.; Kazempour, J., Exploiting flexibility in coupled electricity and natural gas markets: A price-based approach, Proceedings of the IEEE manchester powertech, 1-6 (2017), IEEE
[43] Ordoudis, C., Pinson, P., Morales, J. M., & Zugno, M. (2016). An updated version of the IEEE RTS 24-bus system for electricity market and power system operation studies - DTU working paper (available online). http://orbit.dtu.dk/files/120568114/An.
[44] Pantuso, G.; Fagerholt, K.; Wallace, S. W., Which uncertainty is important in multistage stochastic programmes? A case from maritime transportation, IMA Journal of Management Mathematics, 28, 1, 5-17 (2015) · Zbl 1433.90097
[45] Pinson, P., Wind energy: Forecasting challenges for its operational management, Statistical Science, 28, 4, 564-585 (2013) · Zbl 1331.91140
[46] Pinson, P.; Mitridati, L.; Ordoudis, C.; Østergaard, J., Towards fully renewable energy systems: Experience and trends in Denmark, CSEE Journal of Power and Energy Systems, 3, 1, 26-35 (2017)
[47] Rahmaniani, R.; Crainic, T. G.; Gendreau, M.; Rei, W., The Benders decomposition algorithm: A literature review, European Journal of Operational Research, 259, 3, 801-817 (2017) · Zbl 1402.90158
[48] Rey, P. A.; Sagastizábal, C., Dynamical adjustment of the prox-parameter in bundle methods, Optimization, 51, 2, 423-447 (2002) · Zbl 1008.90073
[49] Rong, A.; Lahdelma, R., Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints, Renewable and Sustainable Energy Reviews, 53, 363-372 (2016)
[50] Ruszczynski, A., A regularized decomposition method for minimizing a sum of polyhedral functions, Mathematical Programming, 35, 3, 309-333 (1986) · Zbl 0599.90103
[51] Ruszczynski, A.; Swietanowski, A., Accelerating the regularized decomposition method for two stage stochastic linear problems, European Journal of Operational Research, 101, 2, 328-342 (1997) · Zbl 0929.90067
[52] Sanchez, C. B.; Bent, R.; Backhaus, S.; Blumsack, S.; Hijazi, H.; Van Hentenryck, P., Convex optimization for joint expansion planning of natural gas and power systems, Proceedings of the 49th hawaii international conference on system sciences (hicss), 2536-2545 (2016), IEEE
[53] Simaan, M.; Cruz, J. B., Additional aspects of the stackelberg strategy in nonzero-sum games, Journal of Optimization Theory and Applications, 11, 6, 613-626 (1973) · Zbl 0245.90039
[54] Simaan, M.; Cruz, J. B., On the Stackelberg strategy in nonzero-sum games, Journal of Optimization Theory and Applications, 11, 5, 533-555 (1973) · Zbl 0243.90056
[55] von Stackelberg, H., Marktjorm und Gleichgewicht (1934), Springer
[56] Taylor, J. A., Financial storage rights, IEEE Transactions on Power Systems, 30, 2, 997-1005 (2015)
[57] Taylor, J. A.; Dhople, S. V.; Callaway, D. S., Power systems without fuel, Renewable and Sustainable Energy Reviews, 57, 1322-1336 (2016)
[58] Ummels, B. C.; Gibescu, M.; Pelgrum, E.; Kling, W. L.; Brand, A. J., Impacts of wind power on thermal generation unit commitment and dispatch, IEEE Transactions on Energy Conversion, 22, 1, 44-51 (2007)
[59] Varmelast (2018). Heating plans. http://varmelast.dk/en/heat-plans/heating-plans.
[60] Virasjoki, V.; Siddiqui, A. S.; Zakeri, B.; Salo, A., Market power with combined heat and power production in the Nordic energy system, IEEE Transactions on Power Systems, 33, 5, 5263-5275 (2018)
[61] Wang, J.; Zong, Y.; You, S.; Træholt, C., A review of Danish integrated multi-energy system flexibility options for high wind power penetration, Clean Energy, 1, 1, 23-35 (2017)
[62] Warrington, J.; Goulart, P.; Mariéthoz, S.; Morari, M., Policy-based reserves for power systems, IEEE Transactions on Power Systems, 28, 4, 4427-4437 (2013)
[63] Weber, C., Uncertainty in the electric power industry: methods and models for decision support, 77 (2006), Springer Science & Business Media
[64] Wu, X.; Conejo, A. J., An efficient tri-level optimization model for electric grid defense planning, IEEE Transactions on Power Systems, 32, 4, 2984-2994 (2017)
[65] Zugno, M.; Morales, J. M.; Madsen, H., Commitment and dispatch of heat and power units via affinely adjustable robust optimization, Computers & Operations Research, 75, 191-201 (2016) · Zbl 1349.90900
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.