×

zbMATH — the first resource for mathematics

A robust a posteriori error estimator for divergence-conforming discontinuous Galerkin methods for the Oseen equation. (English) Zbl 1434.76070
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Software:
Amandus; deal.ii
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Ainsworth and J T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N. Y.) 37, John Wiley & Sons, 2000. · Zbl 1008.65076
[2] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin, The deal. II library, version 8.3, Arch. Numer. Software, 4 (2016), pp. 1-11. · Zbl 1348.65187
[3] T. P. Barrios, J. M. Cascón, and M. González, Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses, Comput. Methods Appl. Mech. Engrg., 313 (2017), pp. 216-238, https://doi.org/10.1016/j.cma.2016.09.012.
[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, 1991. · Zbl 0788.73002
[5] B. Cockburn, G. Kanschat, and D. Schötzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comp., 73 (2004), pp. 569-593, https://doi.org/10.1090/S0025-5718-03-01552-7. · Zbl 1066.76036
[6] B. Cockburn, G. Kanschat, and D. Schötzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74 (2005), pp. 1067-1095, https://doi.org/10.1090/S0025-5718-04-01718-1. · Zbl 1069.76029
[7] B. Cockburn, G. Kanschat, and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31 (2007), pp. 61-73, https://doi.org/10.1007/s10915-006-9107-7. · Zbl 1151.76527
[8] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124, https://doi.org/10.1137/0733054. · Zbl 0854.65090
[9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer-Verlag, 1986. · Zbl 0585.65077
[10] P. Houston, D. Schötzau, and T. P. Wihler, Energy norm shape a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem, J. Sci. Comput., 22 (2005), pp. 347-370, https://doi.org/10.1007/s10915-004-4143-7. · Zbl 1065.76139
[11] P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17 (2007), pp. 33-62, https://doi.org/10.1142/S0218202507001826. · Zbl 1116.65115
[12] P. Houston, E. Süli, and T. P. Wihler, A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs, IMA J. Numer. Anal., 28 (2008), pp. 245-273, https://doi.org/10.1093/imanum/drm009. · Zbl 1144.65070
[13] G. Kanschat, Amandus Software, https://bitbucket.org/guidokanschat/amandus.
[14] G. Kanschat and D. Schötzau, Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 57 (2008), pp. 1093-1113, https://doi.org/10.1002/fld.1795. · Zbl 1140.76020
[15] L. I. G. Kovasznay, Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge Philos. Soc., 44 (1948), pp. 58-62, https://doi.org/10.1017/S0305004100023999. · Zbl 0030.22902
[16] D. Schötzau, C. Schwab, and A. Toselli, Mixed hp-DGFEM for incompressible flows, SIAM J. Numer. Anal., 40 (2002), pp. 2171-2194, https://doi.org/10.1137/S0036142901399124. · Zbl 1055.76032
[17] D. Schötzau and L. Zhu, A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Appl. Numer. Math., 59 (2009), pp. 2236-2255, https://doi.org/10.1016/j.apnum.2008.12.014. · Zbl 1169.65108
[18] N. Shakir, Multilevel Schwarz Methods for Incompressible Flow Problems, Ph.D. thesis, Heidelberg University, 2017.
[19] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50 (1994), pp. 67-83, https://doi.org/10.1016/0377-0427(94)90290-9.
[20] R. Verfürth, Robust a posteriori error estimates for nonstationary convection-diffusion equations, SIAM J. Numer. Anal., 43 (2005), pp. 1783-1802, https://doi.org/10.1137/040604273. · Zbl 1099.65077
[21] R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM J. Numer. Anal., 43 (2005), pp. 1766-1782, https://doi.org/10.1137/040604261. · Zbl 1099.65100
[22] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, Oxford, 2013. · Zbl 1279.65127
[23] L. Zhu and D. Schötzau, A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations, IMA J. Numer. Anal., 31 (2010), pp. 971-1005, https://doi.org/10.1093/imanum/drp038. · Zbl 1225.65104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.