×

zbMATH — the first resource for mathematics

Robust estimation of mixing measures in finite mixture models. (English) Zbl 1466.62284
Summary: In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data.

MSC:
62G07 Density estimation
62G35 Nonparametric robustness
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83 715-726. · Zbl 0885.62062
[2] Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5 445-463. · Zbl 0381.62028
[3] Bordes, L., Mottelet, S. and Vandekerkhove, P. (2006). Semiparametric estimation of a two-component mixture model. Ann. Statist. 34 1204-1232. · Zbl 1112.62029
[4] Chen, J. and Khalili, A. (2008). Order selection in finite mixture models with a nonsmooth penalty. J. Amer. Statist. Assoc. 103 1674-1683. · Zbl 1286.62057
[5] Chen, J., Li, P. and Fu, Y. (2012). Inference on the order of a normal mixture. J. Amer. Statist. Assoc. 107 1096-1105. · Zbl 1443.62055
[6] Chen, J.H. (1995). Optimal rate of convergence for finite mixture models. Ann. Statist. 23 221-233. · Zbl 0821.62023
[7] Cutler, A. and Cordero-Braña, O.I. (1996). Minimum Hellinger distance estimation for finite mixture models. J. Amer. Statist. Assoc. 91 1716-1723. · Zbl 0881.62035
[8] Dacunha-Castelle, D. and Gassiat, E. (1997). The estimation of the order of a mixture model. Bernoulli 3 279-299. · Zbl 0889.62012
[9] Dacunha-Castelle, D. and Gassiat, E. (1999). Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 1178-1209. · Zbl 0957.62073
[10] Donoho, D.L. and Liu, R.C. (1988). The “automatic” robustness of minimum distance functionals. Ann. Statist. 16 552-586. · Zbl 0684.62030
[11] Dudley, C.R.K., Giuffra, L.A., Raine, A.E.G. and Reeders, S.T. (1991). Assessing the role of APNH, a gene encoding for a human amiloride-sensitive \(Na^/H^\) antiporter, on the interindividual variation in red cell \(Na^/Li^\) countertransport. J. Am. Soc. Nephrol. 2 937-943.
[12] Escobar, M.D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577-588. · Zbl 0826.62021
[13] Heinrich, P. and Kahn, J. (2018). Strong identifiability and optimal minimax rates for finite mixture estimation. Ann. Statist. 46 2844-2870. · Zbl 1420.62215
[14] Ho, N. and Nguyen, X. (2016). Convergence rates of parameter estimation for some weakly identifiable finite mixtures. Ann. Statist. 44 2726-2755. · Zbl 1359.62076
[15] Ho, N. and Nguyen, X. (2016). Singularity structures and impacts on parameter estimation in finite mixtures of distributions. Available at arXiv:1609.02655.
[16] Ho, N. and Nguyen, X. (2016). On strong identifiability and convergence rates of parameter estimation in finite mixtures. Electron. J. Stat. 10 271-307. · Zbl 1332.62095
[17] Ho, N., Nguyen, X. and Ritov, Y. (2020). Supplement to “Robust estimation of mixing measures in finite mixture models.” https://doi.org/10.3150/18-BEJ1087SUPP.
[18] Hunter, D.R., Wang, S. and Hettmansperger, T.P. (2007). Inference for mixtures of symmetric distributions. Ann. Statist. 35 224-251. · Zbl 1114.62035
[19] Ishwaran, H., James, L.F. and Sun, J. (2001). Bayesian model selection in finite mixtures by marginal density decompositions. J. Amer. Statist. Assoc. 96 1316-1332. · Zbl 1051.62027
[20] James, L.F., Priebe, C.E. and Marchette, D.J. (2001). Consistent estimation of mixture complexity. Ann. Statist. 29 1281-1296. · Zbl 1043.62023
[21] Johannes, J. (2009). Deconvolution with unknown error distribution. Ann. Statist. 37 2301-2323. · Zbl 1173.62018
[22] Karunamuni, R.J. and Wu, J. (2009). Minimum Hellinger distance estimation in a nonparametric mixture model. J. Statist. Plann. Inference 139 1118-1133. · Zbl 1156.62024
[23] Kasahara, H. and Shimotsu, K. (2014). Non-parametric identification and estimation of the number of components in multivariate mixtures. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 97-111. · Zbl 1411.62141
[24] Keribin, C. (2000). Consistent estimation of the order of mixture models. Sankhya, Ser. A 62 49-66. · Zbl 1081.62516
[25] Lin, N. and He, X. (2006). Robust and efficient estimation under data grouping. Biometrika 93 99-112. · Zbl 1152.62316
[26] Lindsay, B.G. (1995). Mixture models: Theory, geometry and applications. In NSF-CBMS Regional Conference Series in Probability and Statistics. Hayward, CA: Institute of Mathematical Statistics. · Zbl 1163.62326
[27] Lindsay, B.G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods. Ann. Statist. 22 1081-1114. · Zbl 0807.62030
[28] McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. New York: Wiley Interscience. · Zbl 0963.62061
[29] McLachlan, G.J. and Basford, K.E. (1988). Mixture Models: Inference and Applications to Clustering. Statistics: Textbooks and Monographs 84. New York: Dekker. · Zbl 0697.62050
[30] Miller, J. and Dunson, D. Robust Bayesian inference via coarsening. J. Amer. Statist. Assoc. To appear. · Zbl 1428.62287
[31] Nguyen, X. (2013). Convergence of latent mixing measures in finite and infinite mixture models. Ann. Statist. 41 370-400. · Zbl 1347.62117
[32] Pearson, K. (1894). Contributions to the theory of mathematical evolution. Philos. Trans. R. Soc. Lond. Ser. A 185 71-110. · JFM 25.0347.02
[33] Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Statist. Soc. Ser. B 59 731-792. · Zbl 0891.62020
[34] Roeder, K. (1994). A graphical technique for determining the number of components in a mixture of normals. J. Amer. Statist. Assoc. 89 487-495. · Zbl 0798.62004
[35] Teicher, H. (1961). Identifiability of mixtures. Ann. Math. Stat. 32 244-248. · Zbl 0146.39302
[36] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Berlin: Springer. · Zbl 1156.53003
[37] Wiper, M., Rios Insua, D. and Ruggeri, F. (2001). Mixtures of gamma distributions with applications. J. Comput. Graph. Statist. 10 440-454.
[38] Woo, M.-J. and Sriram, T.N. (2006). Robust estimation of mixture complexity. J. Amer. Statist. Assoc. 101 1475-1486. · Zbl 1171.62322
[39] Woodward, W.A., Parr, W.C., Schucany, W.R. and Lindsey, H. (1984). A comparison of minimum distance and maximum likelihood estimation of a mixture proportion. J. Amer. Statist. Assoc. 79 590-598. · Zbl 0547.62017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.