Mildenberger, Heike; Shelah, Saharon Specializing Aronszajn trees with strong axiom A and Halving. (English) Zbl 1472.03060 Notre Dame J. Formal Logic 60, No. 4, 587-616 (2019). Summary: We construct creature forcings with strong Axiom A that specialize a given Aronszajn tree. We work with tree creature forcing. The creatures that live on the Aronszajn tree are normed and have the halving property. We show that our models fulfill \[\aleph_1=\mathfrak{d}< \operatorname{unif}({\mathcal{M}})=\aleph_2=2^{\omega}.\] MSC: 03E35 Consistency and independence results 03E15 Descriptive set theory 03E17 Cardinal characteristics of the continuum 03D65 Higher-type and set recursion theory Keywords:proper forcing; bounding forcing; Aronszajn tree PDF BibTeX XML Cite \textit{H. Mildenberger} and \textit{S. Shelah}, Notre Dame J. Formal Logic 60, No. 4, 587--616 (2019; Zbl 1472.03060) Full Text: DOI Euclid OpenURL References: [1] Abraham, U., “Proper forcing,” pp. 333-94 in Handbook of Set Theory, Vols. 1, 2, 3, edited by A. Kanamori and M. Foreman, Springer, Dordrecht, 2010. · Zbl 1198.03059 [2] Bartoszyński, T., and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, 1995. · Zbl 0834.04001 [3] Fischer, A., M. Goldstern, J. Kellner, and S. Shelah, “Creature forcing and five cardinal characteristics in Cichoń’s diagram,” Archive for Mathematical Logic, vol. 56 (2017), pp. 1045-103. · Zbl 1404.03040 [4] Goldstern, M., D. Mejía, and S. Shelah, “The left side of Cichoń’s diagram,” Proceedings of the American Mathematical Society, vol. 144 (2016), pp. 4025-42. · Zbl 1431.03064 [5] Hirschorn, J., “Random trees under CH,” Israel Journal of Mathematics, vol. 157 (2007), pp. 123-53. · Zbl 1128.03042 [6] Jech, T., Set Theory, Academic Press, New York, 1978. [7] Jech, T., Set Theory, 3rd millennium ed., Springer, Berlin, 2003. [8] Kellner, J., and S. Shelah, “Decisive creatures and large continuum,” Journal of Symbolic Logic, vol. 74 (2009), pp. 73-104. · Zbl 1183.03035 [9] Kellner, J., and S. Shelah, “Creature forcing and large continuum: The joy of halving,” Archive for Mathematical Logic, vol. 51 (2012), pp. 49-70. · Zbl 1259.03063 [10] Kurepa, D., “Ensembles ordonnés et ramifiés,” Ph.D. dissertation, Université Paris IV-Sorbonne, Paris, 1935. · JFM 61.0980.01 [11] Mildenberger, H., and S. Shelah, “Specialising Aronszajn trees by countable approximations,” Archive for Mathematical Logic, vol. 42 (2003), pp. 627-47. · Zbl 1037.03043 [12] Moore, J. T., M. Hrušák, and M. Džamonja, “Parametrized \(\diamondsuit\) principles,” Transactions of the American Mathematical Society, vol. 356 (2004), pp. 2281-306. · Zbl 1053.03027 [13] Ostaszewski, A. J., “A perfectly normal countably compact scattered space which is not strongly zero-dimensional,” Journal of the London Mathematical Society (2), vol. 14 (1976), pp. 167-77. · Zbl 0348.54015 [14] Rosłanowski, A., and S. Shelah, “Norms on possibilities, II: More ccc ideals on \(2^{\omega}\),” Journal of Applied Analysis, vol. 3 (1997), 103-27. · Zbl 0889.03036 [15] Rosłanowski, A., and S. Shelah, “Norms on possibilities, I: Forcing with trees and creatures,” Memoirs of the American Mathematical Society, vol. 141 (1999), no. 671. · Zbl 0940.03059 [16] Rosłanowski, A., and S. Shelah, “Measured creatures,” Israel Journal of Mathematics, vol. 151 (2006), pp. 61-110. · Zbl 1125.03036 [17] Rosłanowski, A., S. Shelah, and O. Spinas, “Nonproper products,” Bulletin of the London Mathematical Society, vol. 44 (2012), pp. 299-310. · Zbl 1250.03103 [18] Shelah, S., Proper and Improper Forcing, 2nd ed., Springer, Berlin, 1998. · Zbl 0889.03041 [19] Solovay, R. M., and S. Tennenbaum, “Iterated Cohen extensions and Souslin’s problem,” Annals of Mathematics (2), vol. 94 (1971), pp. 201-45. · Zbl 0244.02023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.