Blossier, Thomas; Martin-Pizarro, Amador A simple criterion. (Un critère simple.) (French. English summary) Zbl 1472.03034 Notre Dame J. Formal Logic 60, No. 4, 639-663 (2019). Summary: In this article, we mimic the proof of the simplicity of the theory ACFA of generic difference fields in order to provide a criterion, valid for certain theories of pure fields and fields equipped with operators, which shows that a complete theory is simple whenever its definable and algebraic closures are controlled by an underlying stable theory. Cited in 2 Documents MSC: 03C60 Model-theoretic algebra 03C45 Classification theory, stability, and related concepts in model theory 12H05 Differential algebra 12H10 Difference algebra Keywords:simple theories; fields with operators; pseudo-algebraically closed fields PDF BibTeX XML Cite \textit{T. Blossier} and \textit{A. Martin-Pizarro}, Notre Dame J. Formal Logic 60, No. 4, 639--663 (2019; Zbl 1472.03034) Full Text: DOI arXiv Euclid OpenURL References: [1] Ax, J., “The elementary theory of finite fields,” Annals of Mathematics (2), vol. 88 (1968), pp. 239-71. · Zbl 0195.05701 [2] Baldwin, J. T., et Saharon Shelah, “Model companions of \(T{_{\text{Aut}}}\) for stable \(T\),” Notre Dame Journal of Formal Logic, vol. 42 (2001), pp. 129-42. · Zbl 1034.03040 [3] Ben-Yaacov, I., I. Tomasic, et F. O. Wagner, “Constructing an almost hyperdefinable group,” Journal of Mathematical Logic, vol. 4 (2004), pp. 181-212. · Zbl 1069.03023 [4] Beyarslan, Ö., et Z. Chatzidakis, “Geometric representation in the theory of pseudo-finite fields,” Journal of Symbolic Logic, vol. 82 (2017), pp. 1132-39. · Zbl 1422.03079 [5] Blossier, T., A. Martin-Pizarro, et F. O. Wagner, “À la recherche du tore perdu,” Journal of Symbolic Logic, vol. 81 (2016), pp. 1-31. · Zbl 1432.03052 [6] Bouscaren, E., “Model theoretic versions of Weil’s theorem on pregroups,” Notre Dame Mathematical Lectures, vol. 11 (1989), pp. 177-85. · Zbl 0794.03050 [7] Bouscaren, E., et F. Delon, “Groups definable in separably closed fields,” Transactions of the American Mathematical Society, vol. 354 (2002), pp. 945-66. · Zbl 1057.12004 [8] Bustamante Medina, R., “Differentially closed fields of characteristic zero with a generic automorphism,” Revista de Matemática: Teoría y Aplicaciones, vol. 14 (2007), pp. 81-100. [9] Casanovas, E., “The number of types in simple theories,” Annals of Pure and Applied Logic, vol. 98 (1999), pp. 69-86. · Zbl 0939.03039 [10] Chatzidakis, Z., “Generic automorphisms of separably closed fields,” Illinois Journal of Mathematics, vol. 45 (2001), pp. 693-733. · Zbl 0993.03047 [11] Chatzidakis, Z, et E. Hrushovski, “Model theory of difference fields,” Transactions of the American Mathematical Society, vol. 351 (1999), pp. 2997-3071. · Zbl 0922.03054 [12] Chatzidakis, Z., et E. Hrushovski, “Model theory of endomorphisms of separably closed fields,” Journal of Algebra, vol. 281 (2004), pp. 567-603. · Zbl 1163.12303 [13] Chatzidakis, Z., et A. Pillay, “Generic structures and simple theories,” Annals of Pure and Applied Logic, vol. 95 (1998), pp. 71-92. · Zbl 0929.03043 [14] De Piro, T., B. Kim, et J. Millar, “Constructing the hyperdefinable group from the group configuration,” Journal of Mathematical Logic, vol. 6 (2006), pp. 121-39. · Zbl 1165.03333 [15] Delon, F., “Idéaux et types sur les corps séparablement clos,” Mémoires de la Société Mathématique de France, vol. 33 (1988). · Zbl 0678.03016 [16] Delon, F., “Élimination des quantificateurs dans les paires de corps algébriquement clos,” Confluentes Mathematici, vol. 4 (2012), 1250003. · Zbl 1267.03044 [17] Goodrick, J., B. Kim, et A. Kolesnikov, “Amalgamation functors and boundary properties in simple theories,” Israel Journal of Mathematics, vol. 193 (2013), pp. 169-207. · Zbl 1303.03071 [18] Hoffmann, D. M., “Model theoretic dynamics in Galois fashion,” Annals of Pure and Applied Logic, vol. 170 (2019), 755-804. · Zbl 1439.03073 [19] Hrushovski, E., “Unidimensional theories are superstable,” Annals of Pure and Applied Logic, vol. 50 (1990), pp. 117-38. · Zbl 0713.03015 [20] Hrushovski, E., “Pseudo-finite fields and related structures,” pp. 151-212 in Model Theory and Applications, vol. 11 of Quaderni di Matematica, Aracne Editrice, Rome, 2002. · Zbl 1082.03035 [21] Hrushovski, E., “Groupoids, imaginaries and internal covers,” Turkish Journal of Mathematics, vol. 36 (2012), pp. 173-98. · Zbl 1260.03065 [22] Hrushovski, E., et A. Pillay, “Groups definable in local fields and pseudo-finite fields,” Israel Journal of Mathematics, vol. 85 (1994), pp. 203-62. · Zbl 0804.03024 [23] Kim, B., et A. Pillay, “Simple theories,” Annals of Pure and Applied Logic, vol. 88 (1997), pp. 149-64. · Zbl 0897.03036 [24] Kowalski, P., et A. Pillay, “A note on groups definable in difference fields,” Proceedings of the American Mathematical Society, vol. 130 (2002), pp. 205-12. · Zbl 0983.03033 [25] McGrail, T., “The model theory of differential fields with finitely many commuting derivations,” Journal of Symbolic Logic, vol. 65 (2000), pp. 885-913. · Zbl 0960.03031 [26] Messmer, M., “Groups and fields interpretable in separably closed fields,” Transactions of the American Mathematical Society, vol. 344 (1994), pp. 361-77. · Zbl 0803.03023 [27] Moosa, R., et T. Scanlon, “Model theory of fields with free operators in characteristic zero,” Journal of Mathematical Logic, vol. 14 (2014), 1450009. · Zbl 1338.03067 [28] Neumann, P. M., “The structure of finitary permutation groups,” Archiv der Mathematik, vol. 27 (1976), pp. 3-17. · Zbl 0324.20037 [29] Pillay, A., “Some foundational questions concerning differential algebraic groups,” Pacific Journal of Mathematics, vol. 179 (1997), pp. 179-200. · Zbl 0999.12009 [30] Pillay, A., “Differential Galois theory, I,” Illinois Journal of Mathematics, vol. 42 (1998), pp. 678-99. · Zbl 0916.03028 [31] Pillay, A., et D. Polkowska, “On PAC and bounded substructures of a stable structure,” Journal of Symbolic Logic, vol. 71 (2006), pp. 460-72. · Zbl 1100.03027 [32] Pillay, A., T. Scanlon, et F. O. Wagner, “Supersimple fields and division rings,” Mathematical Research Letters, vol. 5 (1998), pp. 473-83. · Zbl 0960.03032 [33] Polkowska, N. M., “On simplicity of bounded pseudoalgebraically closed structures,” Journal of Mathematical Logic, vol. 7 (2007), pp. 173-93. · Zbl 1142.03019 [34] Rideau, S., “A short note on groups in separably closed valued Fields,” preprint, arXiv:1612.02165. [35] Weil, A., “On algebraic groups of transformations,” American Journal of Mathematics, vol. 77 (1995), pp. 355-91. · Zbl 0065.14201 [36] Ziegler, M., “A note on generic types,” preprint, http://home.mathematik.uni-freiburg.de/ziegler/preprints/lemma_fuer_lascar.pdf, 2004. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.