zbMATH — the first resource for mathematics

Convergence rates of a Hermite generalization of Floater-Hormann interpolants. (English) Zbl 07169501
Summary: Cirillo and Hormann (2018) introduce an iterative approach to the Hermite interpolation problem, which, starting from the Lagrange interpolant, successively adds \(m\) corrections terms to interpolate the data up to the \(m\) th derivative. The method is general enough to be applied to any interpolant in linear form with a sufficiently continuous set of basis functions, but Cirillo and Hormann focus their attention on Floater-Hormann interpolants, a family of barycentric rational interpolants that are based on a particular blend of local polynomial interpolants of degree \(d\). They show that the resulting iterative rational Hermite interpolants converge at the rate of \(O ( h^{( m + 1 ) ( d + 1 )} )\) as the mesh size \(h\) converges to zero for \(m = 1 , 2\), and their numerical results suggest that the same rate holds for \(m > 2\). In this paper we prove this convergence rate for any \(m \geq 1\).

65 Numerical analysis
41 Approximations and expansions
Full Text: DOI
[1] Cirillo, E.; Hormann, K., An iterative approach to barycentric rational Hermite interpolation, Numer. Math., 140, 4, 939-962 (2018) · Zbl 06969654
[2] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107, 2, 315-331 (2007) · Zbl 1221.41002
[3] Schneider, C.; Werner, W., Hermite interpolation: The barycentric approach, Computing, 46, 1, 35-51 (1991) · Zbl 0726.65007
[4] Cirillo, E.; Hormann, K., On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes, J. Comput. Appl. Math., 349, 292-301 (2019) · Zbl 1405.41002
[5] Manni, C., Lebesgue constants for Hermite and Fejér interpolation on equidistant nodes, Calcolo, 30, 3, 203-218 (1993) · Zbl 0815.41004
[6] de Boor, C., (A Practical Guide to Splines. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27 (2001), Springer: Springer New York) · Zbl 0987.65015
[7] Szabados, J., On the order of magnitude of fundamental polynomials of Hermite interpolation, Acta Math. Hungar., 61, 3-4, 357-368 (1993) · Zbl 0801.41001
[8] Zhao, Q.; Hao, Y.; Yin, Z.; Zhang, Y., Best barycentric rational Hermite interpolation, (Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application, ISDEA 2010, volume 1 (2010), IEEE Computer Society: IEEE Computer Society Los Alamitos, CA), 417-419
[9] Jing, K.; Kang, N.; Zhu, G., Convergence rates of a family of barycentric osculatory rational interpolation, Appl. Math. Comput., 53, 1, 169-181 (2015) · Zbl 1360.41006
[10] M.S. Floater, C. Schulz, Rational Hermite interpolation without poles, Rational Hermite interpolation without poles, in: [17], 2009, pp. 117-139.
[11] Gautschi, W., Numerical Analysis: An Introduction (1997), Birkhäuser: Birkhäuser Boston · Zbl 0877.65001
[12] Atkinson, K. E., An Introduction to Numerical Analysis (1989), Wiley: Wiley New York · Zbl 0718.65001
[13] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1966), Wiley: Wiley New York · Zbl 0168.13101
[14] Hoppe, R., Theorie der Independenten Darstellung der höhern Differentialquotienten (1845), Johann Ambrosius Barth: Johann Ambrosius Barth Leipzig
[15] Johnson, W. P., The curious history of Faà di Bruno’s formula, Amer. Math. Monthly, 109, 3, 217-234 (2002) · Zbl 1024.01010
[16] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software, 33, 2 (2007), Article 13, 15 pages · Zbl 1365.65302
[17] Schulz, C., Topics in Curve Intersection and Barycentric Interpolation (2009), University of Oslo, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.