zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. (English) Zbl 0717.65099
If one applies standard multigrid methods to solve linear systems resulting from the 9-point discretization of a linear second-order elliptic partial differential equation with discontinuous coefficients or dominating first-order terms, the rate of convergence often deteriorates. To improve the convergence behaviour of the multigrid methods in these cases the author develops a special multigrid code, in which matrix- dependent prolongations and restrictions are used. By hard numerical examples it is shown that this code is more robust and more efficient (for these hard problems) than a standard multigrid code based on the usual prolongation and restriction obtained by linear interpolation.
Reviewer: M.Jung

MSC:
65N55Multigrid methods; domain decomposition (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
WorldCat.org
Full Text: DOI
References:
[1] Alcouffe, R. E.; Brandt, A.; Jr., J. E. Dendy; Painter, J. W.: The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. statist. Comput. 2, No. 4, 430-454 (1981) · Zbl 0474.76082
[2] Brandt, A.: Multilevel adaptive solutions to boundary-value problems. Math. comp. 31, 333-390 (1977) · Zbl 0373.65054
[3] Jr, J. E. Dendy: Blackbox multigrid for nonsymmetric problems. Appl. math. Comput. 13, 261-283 (1983) · Zbl 0533.65063
[4] Hackbusch, W.: Multi-grid methods and applications. Springer ser. Comput. math. 4 (1985) · Zbl 0595.65106
[5] Hemker, P. W.; De Zeeuw, P. M.: Some implementations of multigrid linear system solvers. Inst. math. Appl. conf. Ser. new ser., 85-116 (1985)
[6] Kershaw, D. S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. comput. Phys. 26, 43-65 (1978) · Zbl 0367.65018
[7] Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. Lecture notes in math. 960, 502-534 (1981)
[8] Kettler, R.; Meijerink, J. A.: A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients in general domains. Shell publ. 604 (1981)
[9] Ruge, J.; Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid. Inst. math. Appl. conf. Ser. new ser., 169-212 (1985)
[10] Sonneveld, P.; Wesseling, P.; De Zeeuw, P. M.: Multigrid and conjugate gradient methods as convergence acceleration techniques. Multigrid methods for integral and differential equations, 117-167 (1985) · Zbl 0577.65086
[11] Stone, H. L.: Iterative solution of implicit approximation of multidimensional partial differential equations. SIAM J. Numer. anal. 5, No. 3, 530-558 (1968) · Zbl 0197.13304
[12] Wesseling, P.: A robust and efficient multigrid method. Lecture notes in math 960, 614-630 (1981)
[13] Young, D. M.: Iterative solution of large linear systems. (1971) · Zbl 0231.65034
[14] De Zeeuw, P. M.; Van Asselt, E. J.: The convergence rate of multi-level algorithms applied to the convection-diffusion equation. SIAM J. Sci. statist. Comput. 6, No. 2, 492-503 (1985) · Zbl 0586.65067