Johnson, Claes Adaptive finite element methods for diffusion and convection problems. (English) Zbl 0717.76078 Comput. Methods Appl. Mech. Eng. 82, No. 1-3, 301-322 (1990). Summary: We give a survey of recent results obtained together with K. Eriksson on adaptive h-methods for the basic linear partial differential equations of elliptic, parabolic and hyperbolic type [e.g., Math. Comput. 50, No.182, 361-383 (1988; Zbl 0644.65080)]. Our adaptive algorithms are based on a posteriori error estimates leading to reliable methods, and comparison with sharp a priori error estimates is made to prove efficiency of the procedures. Cited in 46 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76R50 Diffusion Keywords:adaptive h-methods; linear partial differential equations of elliptic, parabolic and hyperbolic; a posteriori error estimates; a priori error estimates Citations:Zbl 0644.65080 PDF BibTeX XML Cite \textit{C. Johnson}, Comput. Methods Appl. Mech. Eng. 82, No. 1--3, 301--322 (1990; Zbl 0717.76078) Full Text: DOI References: [1] Eriksson, K., Adaptive finite element methods based on optimal error estimates for linear elliptic problems, (Technical report (1987), Department of Mathematics, Chalmers University of Technology) [2] Eriksson, K., Adaptive finite element methods for parabolic problems II: A priori error estimates in \(L_∞(L_2)\) and \(L_∞(L_∞)\), (Technical report (1988), Department of Mathematics, Chalmers University of Technology) [3] Eriksson, K., Error estimates for the \(H_0^1(Σ)\) and \(L_2(Σ)\) projections onto finite element spaces under weak mesh regularity assumptions (1988), Department of Mathematics, Chalmers University of Technology [4] Eriksson, K.; Johnson, C., An adaptive finite element method for linear elliptic problems, Math. Comp., 50, 361-383 (1988) · Zbl 0644.65080 [5] Eriksson, K.; Johnson, C., Error estimates and automatic time step control for non-linear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23 (1987) · Zbl 0618.65104 [8] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for convection-diffusion problems, (Technical report (1990), Department of Mathematics, Chalmers University of Technology) · Zbl 0795.65074 [9] Babuška, I.; Rheinboldt, W. C., Reliable error estimation and mesh adaptation for the finite element method, (Computational Methods in Nonlinear Mechanics (1980), North-Holland: North-Holland New York), 67-108 [10] Bank, R., Analysis of a local a posteriori error estimate for elliptic equations, (Babuška, I.; etal., Accuracy Estimates and Adaptive Refinements in Finite element Computations (1986), Wiley: Wiley New York) [11] Ewing, D., Adaptive mesh refinements in large-scale fluid flow simulation, (Babuška, I.; etal., Accuracy Estimates and Adaptive Refinements in Finite element Computations (1986), Wiley: Wiley New York) [12] Abdalass, E. M., Resolution performance du probléme de Stokes par mini-element, amillages auto-adaptifs et methodes multigrilles-applications, (Thése de 3me cycle (1987), Ecole Central de Lyon) [13] Verfürth, R., A posteriori error estimators for the Stokes equations, Numer. Math. (1989) · Zbl 0674.65092 [15] Löhner, R.; Morgan, K.; Zienkiewicz, O. C., Adaptive grid refinement for the compressible Euler equations, (Babuška, I.; etal., Accuracy Estimates and Adaptive Refinements in Finite element Computations (1986), Wiley: Wiley New York) · Zbl 0561.76079 [16] Oden, J. T.; Demkowicz, L.; Strouboulis, T.; Devoo, P., Adaptive methods for problems in solid and fluid mechanics, (Babuška, I.; etal., Accuracy Estimates and Adaptive Refinements in Finite element Computations (1986), Wiley: Wiley New York) [17] Hansbo, P., Adaptivity and streamline diffusion procedures in the finite element methods, (Thesis (1989), Chalmers University of Technology) [18] Eriksson, K.; Johnson, C.; Thomée, V., Time discretization of parabolic problems by the Discontinuous Galerkin method, RAIRO MAN, 19, 611-643 (1985) · Zbl 0589.65070 [19] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087 [20] Johnson, C.; Schatz, A.; Wahlbin, L., Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49, 25-38 (1987) · Zbl 0629.65111 [22] Szepessy, A., Convergence of the streamline diffusion finite element method for conservation laws, (Thesis (1989), Department of Mathematics, Chalmers University of Technology) · Zbl 0751.65061 [23] Johnson, C., Error estimates and adaptive time step control for a class of one step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926 (1988) · Zbl 0661.65076 [25] Lennblad, J., An adaptive finite element method for a linear parabolic problem, (Technical report (1988), Department of Mathematics, Chalmers University of Technology) [26] Lippold, G., Error estimates and step-size control for the approximate evolution of a first order evolution equation (1988), Akademie der Wissenschaffen der Karl-Weierstrass-institute für Matematik: Akademie der Wissenschaffen der Karl-Weierstrass-institute für Matematik Berlin, Preprint This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.