×

Absence of Cartan subalgebras for right-angled Hecke von Neumann algebras. (English) Zbl 1447.46047

Summary: For a right-angled Coxeter system \((W,S)\) and \(q>0\), let \(\mathcal{M}_q\) be the associated Hecke von Neumann algebra, which is generated by self-adjoint operators \(T_s\), \(s \in S\), satisfying the Hecke relation \((\sqrt{q}\: T_s -q) (\sqrt{q} \: T_s + 1) = 0\), as well as suitable commutation relations. Under the assumption that \((W,S)\) is irreducible and \(\vert S \vert \geq 3\), it was proved by Ł. Garncarek [J. Funct. Anal. 270, No. 3, 1202–1219 (2016; Zbl 1397.20012)] that \(\mathcal{M}_q\) is a factor (of type \(\mathrm{II}_1)\) for a range \(q \in [\rho, \rho^{-1}]\) and otherwise \(\mathcal{M}_q\) is the direct sum of a \(\mathrm{II}_1\)-factor and \(\mathbb{C} \).
In this paper we prove (under the same natural conditions as Garncarek) that \(\mathcal{M}_q\) is noninjective, that it has the weak-\( \ast\) completely contractive approximation property and that it has the Haagerup property. In the hyperbolic factorial case, \(\mathcal{M}_q\) is a strongly solid algebra and consequently \(\mathcal{M}_q\) cannot have a Cartan subalgebra. In the general case, \(\mathcal{M}_q\) need not be strongly solid. However, we give examples of nonhyperbolic right-angled Coxeter groups such that \(\mathcal{M}_q\) does not possess a Cartan subalgebra.

MSC:

46L10 General theory of von Neumann algebras
20F55 Reflection and Coxeter groups (group-theoretic aspects)
20C08 Hecke algebras and their representations

Citations:

Zbl 1397.20012
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] ; Bożejko, Boll. Un. Mat. Ital. A (6), 3, 297 (1984)
[2] 10.1007/BF01450478 · Zbl 0819.20043
[3] 10.1090/gsm/088
[4] 10.4171/JNCG/11-1-9 · Zbl 1373.46055
[5] 10.24033/asens.2183 · Zbl 1290.46053
[6] 10.1016/j.aim.2013.06.017 · Zbl 1288.46037
[7] 10.2307/1970968 · Zbl 0361.46067
[8] 10.2307/1971057 · Zbl 0343.46042
[9] ; Davis, The geometry and topology of Coxeter groups. London Math. Soc. Monographs Series, 32 (2008) · Zbl 1142.20020
[10] 10.2140/gt.2007.11.47 · Zbl 1173.20029
[11] ; De Commer, J. Operator Theory, 66, 59 (2011)
[12] 10.2140/gt.2006.10.667 · Zbl 1166.20301
[13] ; Effros, Operator spaces. London Math. Soc. Monographs New Series, 23 (2000) · Zbl 0969.46002
[14] 10.1016/j.jfa.2015.11.014 · Zbl 1397.20012
[15] 10.1007/BF01410082 · Zbl 0408.46046
[16] 10.2307/2154501 · Zbl 0806.43002
[17] 10.1007/978-3-540-39702-1_3
[18] 10.24033/asens.2239 · Zbl 1351.46058
[19] 10.1090/tran/6321 · Zbl 1342.46056
[20] 10.1007/BF00400222 · Zbl 0602.17005
[21] 10.1090/S0273-0979-1985-15304-2 · Zbl 0564.57006
[22] 10.1142/S0129167X09005285 · Zbl 1194.22003
[23] 10.1007/978-1-4612-0783-2
[24] 10.4171/GGD/40 · Zbl 1147.43003
[25] 10.4007/annals.2010.172.713 · Zbl 1201.46054
[26] 10.1017/CBO9781107360235
[27] 10.1515/crelle-2012-0104 · Zbl 1314.46078
[28] 10.1515/CRELLE.2006.077 · Zbl 1170.46052
[29] 10.1007/978-3-662-10451-4
[30] 10.1016/j.aim.2011.07.017 · Zbl 1252.46059
[31] 10.1006/jfan.2000.3704 · Zbl 1011.46058
[32] 10.4171/PRIMS/147 · Zbl 1315.46067
[33] 10.1007/BF02246772 · Zbl 0856.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.