Speck, Jared Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearities. (English) Zbl 1439.35094 Anal. PDE 13, No. 1, 93-146 (2020). The author proves a constructive stable ODE-type blowup result for open sets of solutions to a family of quasilinear wave equations in three spatial dimensions featuring a Riccati-type derivative-quadratic semilinear term. For the equation it is assumed that the quasilinear terms satisfy certain structural assumptions, which in particular ensure that the “elliptic part” of the wave operator vanishes precisely at the singular points. The initial data are assumed to be compactly supported and small or large in \(L^{\infty}\), but the spatial derivatives must initially satisfy a nonlinear smallness condition compared to the time derivative. As a corollary of the main results, it is shown that there are quasilinear wave equations that exhibit two distinct kinds of blowup: the formation of shocks for one non-trivial set of data, and ODE-type blowup for another non-trivial set. Reviewer: Dongbing Zha (Shanghai) Cited in 3 Documents MSC: 35B44 Blow-up in context of PDEs 35L72 Second-order quasilinear hyperbolic equations 35L67 Shocks and singularities for hyperbolic equations 35L15 Initial value problems for second-order hyperbolic equations Keywords:compactly supported initial data; relative smallness of spatial derivatives; three spatial dimensions PDF BibTeX XML Cite \textit{J. Speck}, Anal. PDE 13, No. 1, 93--146 (2020; Zbl 1439.35094) Full Text: DOI arXiv OpenURL References: [1] 10.1007/BF02392822 · Zbl 0973.35135 [2] 10.2307/121020 · Zbl 1080.35043 [3] 10.1353/ajm.2001.0037 · Zbl 1112.35342 [4] 10.1088/0264-9381/27/24/245012 · Zbl 1206.83025 [5] 10.1088/0951-7715/7/2/011 · Zbl 0857.35018 [6] 10.1016/j.jde.2018.11.016 · Zbl 1415.35200 [7] 10.4171/031 · Zbl 1117.35001 [8] 10.4171/068 · Zbl 1197.83004 [9] ; Christodoulou, The shock development problem. EMS Monographs in Math., 8 (2019) · Zbl 1445.35003 [10] ; Christodoulou, The global nonlinear stability of the Minkowski space. Princeton Math. Series, 41 (1993) · Zbl 0827.53055 [11] 10.1007/s40818-016-0009-1 · Zbl 1402.35172 [12] ; Christodoulou, Compressible flow and Euler’s equations. Surveys of Modern Math., 9 (2014) · Zbl 1329.76002 [13] 10.1063/1.4960044 · Zbl 1348.78014 [14] 10.1090/memo/1205 · Zbl 1406.35064 [15] 10.1088/0951-7715/29/8/2451 · Zbl 1353.35209 [16] 10.1007/s00220-016-2776-7 · Zbl 1362.35188 [17] 10.1353/ajm.2015.0002 · Zbl 1315.35130 [18] 10.1007/s00220-017-3043-2 · Zbl 1404.35294 [19] 10.1007/3-540-29089-3_14 [20] 10.1080/03605300903575857 · Zbl 1201.35141 [21] 10.1002/cpa.20366 · Zbl 1232.58021 [22] 10.1215/00127094-0000009X · Zbl 1378.35050 [23] 10.4310/DPDE.2012.v9.n1.a3 · Zbl 1259.35044 [24] 10.1090/S0002-9947-2013-06038-2 · Zbl 1286.35049 [25] 10.1007/s00220-016-2610-2 · Zbl 1361.35112 [26] 10.1007/s00023-011-0125-0 · Zbl 1245.58014 [27] 10.1307/mmj/1409932630 · Zbl 1310.35170 [28] 10.4171/JEMS/261 · Zbl 1230.35067 [29] 10.1007/s00039-012-0174-7 · Zbl 1258.35148 [30] 10.4171/JEMS/336 · Zbl 1282.35088 [31] 10.4310/CJM.2013.v1.n1.a3 · Zbl 1308.35143 [32] 10.3934/cpaa.2015.14.1705 · Zbl 1330.35047 [33] 10.1090/conm/238/03545 [34] 10.2140/apde.2012.5.777 · Zbl 1329.35207 [35] 10.1142/S0219891616500016 · Zbl 1346.35005 [36] 10.1093/imrn/rnv365 · Zbl 1404.35296 [37] 10.1016/j.jfa.2016.10.019 · Zbl 1361.35115 [38] 10.1002/cpa.3160270307 · Zbl 0302.35064 [39] 10.1007/BF01647974 · Zbl 0406.35042 [40] 10.1002/cpa.3160340103 · Zbl 0453.35060 [41] 10.1002/cpa.3160330403 · Zbl 0421.35053 [42] 10.1007/s11511-008-0031-6 · Zbl 1183.35202 [43] 10.1080/03605309608821177 · Zbl 0846.35083 [44] 10.1215/S0012-7094-03-11711-1 · Zbl 1031.35091 [45] 10.4007/annals.2005.161.1143 · Zbl 1089.83006 [46] 10.1007/s00222-014-0567-3 · Zbl 1330.53089 [47] 10.1016/j.matpur.2013.10.008 · Zbl 1320.35096 [48] 10.1007/s00222-007-0089-3 · Zbl 1139.35021 [49] 10.1215/00127094-2009-005 · Zbl 1170.35066 [50] 10.1063/1.1704154 · Zbl 0135.15101 [51] 10.2307/2316618 · Zbl 0228.35019 [52] ; Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Regional Conf. Series Appl. Math., 11 (1973) · Zbl 0268.35062 [53] 10.1090/jams/888 · Zbl 1377.83062 [54] 10.1007/s00222-018-0799-8 · Zbl 1409.35142 [55] 10.1090/S0273-0979-1981-14908-9 · Zbl 0465.76061 [56] 10.1090/memo/0281 · Zbl 0517.76068 [57] 10.1090/memo/0275 · Zbl 0506.76075 [58] 10.1215/S0012-7094-97-08605-1 · Zbl 0872.35049 [59] 10.1353/ajm.2003.0033 · Zbl 1052.35043 [60] 10.1007/s00208-004-0587-1 · Zbl 1136.35055 [61] 10.1016/j.jfa.2007.03.007 · Zbl 1133.35070 [62] 10.1215/00127094-1902040 · Zbl 1270.35320 [63] 10.1007/s00220-014-2132-8 · Zbl 1315.35134 [64] 10.1090/tran/6450 · Zbl 1339.35062 [65] 10.1007/s00039-010-0081-8 · Zbl 1204.35153 [66] 10.1215/00127094-2430477 · Zbl 1292.35283 [67] 10.1007/s40818-018-0046-z · Zbl 1400.35181 [68] 10.1007/s00222-016-0676-2 · Zbl 1362.35248 [69] 10.1007/s10240-011-0037-z · Zbl 1284.35358 [70] 10.1007/BF01207258 · Zbl 0619.35073 [71] ; Riemann, Abh. König. Ges. Wiss. Göttengen, 8, 43 (1860) [72] 10.4007/annals.2018.187.1.2 · Zbl 1384.83005 [73] 10.1007/s00029-018-0437-8 · Zbl 1402.83120 [74] 10.4007/annals.2010.172.187 · Zbl 1213.35392 [75] 10.1007/s00023-015-0401-5 · Zbl 1335.83009 [76] 10.1090/tran/6524 · Zbl 1339.35063 [77] 10.1007/BF00280033 · Zbl 0564.35070 [78] 10.1016/0022-0396(84)90169-4 · Zbl 0555.35091 [79] 10.1007/BF01210741 · Zbl 0606.76088 [80] 10.4007/annals.2005.162.291 · Zbl 1098.35113 [81] ; Speck, Shock formation in small-data solutions to 3D quasilinear wave equations. Math. Surveys and Monographs, 214 (2016) · Zbl 1373.35005 [82] 10.2140/apde.2017.10.2001 · Zbl 1382.35168 [83] 10.1007/s40818-017-0042-8 · Zbl 1400.35182 [84] 10.2140/paa.2019.1.447 · Zbl 1426.35159 [85] 10.1007/s00205-019-01411-7 · Zbl 1428.35334 [86] 10.1007/s40818-016-0014-4 · Zbl 1402.35173 [87] 10.1063/1.4833375 · Zbl 1288.83009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.