×

Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. (English) Zbl 1435.30050

Summary: In this paper we define a subclass of bi-univalent functions. Further, we find the estimates on the bounds \(|a_2|\) and \(|a_3|\), the Fekete-Szegö inequalities and the second Hankel determinant inequality for defined class of bi-univalent functions.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] N. M. Alarifi, R. M. Ali and V. Ravichandran, On the second Hankel determinant for the \(k^{\hbox{th}}-\) root transform of analytic functions, Filomat, 31 (2) (2017), 227-245.
[2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc., 35 (2) (2009), 119-142, 276. · Zbl 1193.30006
[3] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (3) (2012), 344-351. · Zbl 1246.30018
[4] Ş. Alt\i nkaya and S. Yalçin, Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination, Adv. Math. Sci. J. 3 (2) (2014), 63-71 · Zbl 1304.30011
[5] \c S. Alt\i nkaya and S. Yalçin, Second Hankel determinant for bi-starlike functions of order \(\beta \), Matematiche (Catania) 71 (1) (2016), 115-125. · Zbl 1362.30010
[6] \c S. Alt\i nkaya and S. Yalç\i n, Upper bound of second Hankel determinant for bi-Bazilevič functions, Mediterr. J. Math. 13 (6) (2016), 4081-4090. · Zbl 1353.30011
[7] \c S. Alt\i nkaya and S. Yalç\i n, Construction of second Hankel determinant for a new subclass of bi-univalent functions, Turk J Math; doi: 10.3906/mat-1507-39. · Zbl 1424.30023
[8] S. Azizi, A. Ebadian and Sh. Najafzadeh, Coefficient estimates for a subclass of bi-univalent functions, Commun. Adv. Comput. Sci. Appl., 1 (2015), 41-44.
[9] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31 (2) (1986), 70-77. · Zbl 0614.30017
[10] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43 (2) (2013), 59-65. · Zbl 1349.30040
[11] S. Bulut, N. Magesh and V. K. Balaji, Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal. 11 (1) (2017), 83-89. · Zbl 1424.30033
[12] M. Ça\u glar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (3) (2017), 694-706. · Zbl 1424.30034
[13] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat,27 (7) (2013), 1165-1171. · Zbl 1324.30017
[14] V. K. Deekonda and R. Thoutreedy, An upper bound to the second Hankel determinant for functions in Mocanu class, Vietnam J. Math., April-2014 (On line version). · Zbl 1323.30015
[15] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (1) (2013), 49-60. · Zbl 1412.30032
[16] E. Deniz, M. Çağlar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order \(\beta,\) Appl. Math. Comput., 271 (2015), 301?-307. · Zbl 1410.30007
[17] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[18] M. Fekete and G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. S1-8 (2), 85. · Zbl 0006.35302
[19] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2) (2011), 1569-1573. · Zbl 1218.30024
[20] U. Grenander and G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, 1958. · Zbl 0080.09501
[21] J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., 17 (9) (1986), 1140-1144. · Zbl 0607.30013
[22] J. M. Jahangiri, S. G. Hamidi and S. Abd. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37 (3) (2014), 633-640. · Zbl 1295.30037
[23] J. M. Jahangiri, N. Magesh and J. Yamini, Fekete-Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl., 3 (1) (2015), 133-140. · Zbl 1463.30054
[24] S. Kanas, E. Analouei Adegani and A. Zireh, An unified approach to second Hankel determinant of bi-subordinate functions, Mediterr. J. Math. 14 (6) (2017), 14:233. · Zbl 1381.30010
[25] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. · Zbl 0165.09102
[26] B. Kowalczyk, A. Lecko and H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publ. Inst. Math. (Beograd) (Nouvelle Ser.) 101 (115) (2017), 143-149;
[27] K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 281 (2013), 1-17. · Zbl 1302.30018
[28] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157-169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994. · Zbl 0823.30007
[29] G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1 (3) (2009), 85-89. · Zbl 1312.30024
[30] H. Orhan, E. Deniz and D. Raducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (1) (2010), 283-295. · Zbl 1189.30049
[31] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Filomat, 29 (6) (2015), 1259?-1267. · Zbl 1458.30031
[32] H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. 27 (5-6) (2016), 889-897. · Zbl 1352.30013
[33] H. Orhan, N. Magesh and V. K. Balaji, Certain classes of bi-univalent functions with bounded boundary variation, Tbilisi Math. J. 10 (4) (2017), 17-27. · Zbl 1376.30012
[34] H. Orhan, N. Magesh and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (3) (2016), 679-687. · Zbl 1424.30059
[35] H. Orhan, E. Toklu and E. Kad\i o\u glu, Second Hankel determinant problem for k-bi-starlike functions, Filomat 31 (12) (2017), 3897-3904.
[36] Z. Peng and Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Mathematica Scientia, 34B (1) (2014), 228-240. · Zbl 1313.30067
[37] C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
[38] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2) (2015), 242-246. · Zbl 1326.30019
[39] H. M. Srivastava, S. Bulut, M. Ça\u glar, and N. Ya\u gmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842. · Zbl 1432.30014
[40] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (8) (2015), 1839-1845. · Zbl 1458.30035
[41] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of \(M\)-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. No. 41 (2015), 153-164. · Zbl 1349.30081
[42] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of \(m\)-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (3) (2016), 863-871. · Zbl 1363.30035
[43] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (5-6) (2017), 693-706. · Zbl 1370.30009
[44] H. M. Srivastava,S. B. Joshi, S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (2016), Special Issue, 250-258. · Zbl 1346.30011
[45] H. M. Srivastava, N. Magesh and J. Yamini, Initial coefficient estimates for bi-\( \lambda \)-convex and bi-\( \mu \)-starlike functions connected with arithmetic and geometric means, Electron. J. Math. Anal. Appl. 2 (2) (2014), 152-162. · Zbl 1463.30088
[46] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegő problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145-163. · Zbl 1021.30014
[47] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (10) (2010), 1188-1192. · Zbl 1201.30020
[48] H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, On certain subclasses of bi-univalent functions associated with Hohlov operator. Global J. Math. Anal. 1 (2) (2013), 67-73.
[49] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of \(m\)-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2) (2014), 1-10. · Zbl 1304.30026
[50] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of \(m\)-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (4) (2016), 1063-1092. · Zbl 1357.30012
[51] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (6) (2012), 990-994. · Zbl 1244.30033
[52] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (23) (2012), 11461-11465. · Zbl 1284.30009
[53] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (1) (2014), 169-178. · Zbl 1300.30035
[54] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal., 2014, Art. ID 357480, 1-6. · Zbl 1469.30036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.