×

zbMATH — the first resource for mathematics

Uniqueness for the difference monomials of \(p\)-adic entire functions. (English) Zbl 1435.30134
Summary: The aim of this paper is to discuss the uniqueness of \(p\)-adic difference monomials \(f^nf(z+c)\). The results obtained in this paper are the \(p\)-adic analogues and supplements of the theorems given by X.-G. Qi et al. [Comput. Math. Appl. 60, No. 6, 1739–1746 (2010; Zbl 1202.30045)], G. Wang et al. [Abstr. Appl. Anal. 2012, Article ID 407351, 8 p. (2012; Zbl 1247.30047)], C.-C. Yang and X. Hua [Ann. Acad. Sci. Fenn., Math. 22, No. 2, 395–406 (1997; Zbl 0890.30019)].

MSC:
30G06 Non-Archimedean function theory
30D20 Entire functions of one complex variable (general theory)
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] W.W. Adam and E.G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois. J. Math. 15(1971), 418-424. · Zbl 0215.13202
[2] V.H. An and H.H. Khoai, Value sharing problems for p-adic meromorphic functions and their difference polynomials, Ukranian Math. J. 64(2012), 147-164. · Zbl 1272.30066
[3] K. Boussaf, A. Escassut and J. Ojeda, New results on applications of Nevanlinna methods to value sharing problems, P-adic Numbers, Ultrametric Analysis and Applications, 5(2013), 278-301. · Zbl 1309.30038
[4] K. Boussaf, A. Escassut and J. Ojeda, P-adic meromorphic functions sharing a small function, Bull. Sci. Math. 136(2012), 172-200. · Zbl 1255.30047
[5] A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscript Math. 67(1990), 251-269. · Zbl 0697.30047
[6] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8(1997), 145-155. · Zbl 0935.30029
[7] A. Boutabaa and A. Escassut, URS and URSIMS for p-adic meromorphic functions inside a disk, Proc. Edinburgh Math. Soc. 44(2001), 485-504. · Zbl 1002.12008
[8] W. Cherry and C.C. Yang, Uniqueness of non-archimedean entire functions sharing sets of values counting multiplicities, Proc. Amer. Math. Soc. 127(1998), 967-971. · Zbl 0993.30026
[9] J. Clunie, On a result of Hayman, J. Lond. Math. Soc. 42(1967), 389-392. · Zbl 0169.40801
[10] W.K. Hayman, Reserch problems in function theory, University of London, The Athlone Press, London, 1967.
[11] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70(1959), 9-42. · Zbl 0088.28505
[12] P.C. Hu, and C.C. Yang, Meromorphic functions over non-archimedean fields, Kluwer, Dordrecht, 2000. · Zbl 0984.30027
[13] H.H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50(1983), 695-711. · Zbl 0544.30039
[14] H.H. Khoai and, Value distribution for p-adic hypersurfaces, Taiwanese J. Math. 7(2003), 51-67. · Zbl 1090.32008
[15] H.H. Khoai and M.V. Quang, On p-adic Nevanlinna theory, Lecture Notes in Mathematics, Vol. 1351, Springer-Verlag, Berlin, 1988, 146-158. · Zbl 0673.30035
[16] H.H. Khoai, Vu Hoai An and N.X. Lai, Value sharing problem and uniqueness for p-adic meromorphic functions, Annales Univ. Sci. Budapest. Sect. Comp.38(2012), 57-70. · Zbl 1274.30158
[17] J. Ojeda, On Hayman’s conjecture over a p-adic field, Taiwanese J. Math. 12(2008), 2295-2313. · Zbl 1189.30088
[18] J. Ojeda, Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and non-Archimedean Analysis, Contemporary Mathematics, 508(2010), 161-179. · Zbl 1288.30047
[19] J. Ojeda, Uniqueness for ultrametric analytic functions, Bull. Math. Soc. Sci. Math. Roumanie. 54(2011), 153-165. · Zbl 1240.30205
[20] P.D. Tuan and N.T. Quang, Picad values and uniqueness for p-adic meromorphic functions, Acta Math Vietnam. 41(2016), 563-582. · Zbl 1369.30048
[21] X.G. Qi, L.Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60(2010), 1739-1746. · Zbl 1202.30045
[22] G. Wang, D.L. Han and Z.T. Wen, Uniqueness theorems on difference monomials of entire functions, Abstract Appl. Anal. 2012(2012), Article ID 407351. · Zbl 1247.30047
[23] J.T.Y. Wang, Uniqueness polynomials and bi-unique range sets, Acta Arith. 104(2002), 183-200. · Zbl 1011.30043
[24] C.C. Yang and X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22(1997), 395-406. · Zbl 0890.30019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.