Reyad, Hesham; Jamal, Farrukh; Othman, Soha; Hamedani, G. G. The transmuted Gompertz-G family of distributions: properties and applications. (English) Zbl 1437.62075 Tbil. Math. J. 11, No. 3, 47-67 (2018). Summary: We introduce and study a new class of continuous distributions called the transmuted Gompertz-G family which extends the Gompertz class proposed by M. Alizadeh et al. [J. Stat. Theory Pract. 11, No. 1, 179–207 (2017; Zbl 1426.62057)]. Explicit expressions for the ordinary and incomplete moments, generating function, probability weighted moment, Lorenz and Bonferroni curves, order statistics, Rényi and Shanon entropies, stress strength model moment of residual and reversed residual life and characterizations for the new family are investigated. We discuss the maximum likelihood estimates for the model parameters. The performance of the new family is assessed by means of two applications. Cited in 2 Documents MSC: 62E10 Characterization and structure theory of statistical distributions 60E05 Probability distributions: general theory 62N05 Reliability and life testing 62G30 Order statistics; empirical distribution functions 62E15 Exact distribution theory in statistics Keywords:Rényi and Shanon entropies; Gompertz-G family; maximum likelihood estimates; order statistic; stress strength model; transmuted-G family Citations:Zbl 1426.62057 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B. and Ghosh, I. (2016a). The Gompertz-G family of distributions. Journal of Statistical Theory and Practice, 11\eqrefGrindEQ__1_: 179-207. · Zbl 1426.62057 [2] Alizadeh, M., Altun, E., Cordeiro, G. M. and Rasekhi, M. (2018). The odd power Cauchy family of distributions: properties, regression models and applications. Journal of Statistical Computation and Simulation, 88\eqrefGrindEQ__4_:785-805. · Zbl 07192579 [3] Alizadeh, M., Cordeiro, G. M., Nascimento, A. D. C., Lima, M. D. S. and Ortega, E. M. M. (2016b). Odd-Burr generalized family of distributions with some applications. Journal of Statistical Computation and Simulation, 83, 326-339. · Zbl 07191943 [4] Al-Shomrani, A., Arif, O., Shawky, K., Hanif, S. and Shahbaz, M. Q. (2016). Topp-Leone family of distributions: some properties and application. Pak.j.stat.oper.res. Vol.XII\eqrefGrindEQ__3_: 443-451. · Zbl 1509.60026 [5] Bourguignon, M,. Silva, R. B. and Cordeiro, G. M. (2014). The Weibull-G family of probability distributions. Journal of Data Science, 12: 53-68. [6] Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898. · Zbl 1219.62022 · doi:10.1080/00949650903530745 [7] Cordeiro, G. M. and Lemonte, A. J. (2013). The \(\beta \)- Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling. Comput. Stat. Data Anal, 55: 1445-1461 · Zbl 1328.62572 · doi:10.1016/j.csda.2010.10.007 [8] Cordeiro, G. M., Ortega, E. M. M., Popovic´, B. V. and Pescim, R. R. (2014). The Lomax generator of distributions: properties, minification process and regression model. Appl. Math. Comput., 247: 465-486. · Zbl 1338.60031 · doi:10.1016/j.amc.2014.09.004 [9] El-Bassiouny, A. H., Abdo, N. F., Shahen, H. S. (2015). Exponential lomax distribution. International Journal of Computer applications, 121\eqrefGrindEQ__13_: 24-29. [10] Eugene, N., Lee, C., Famoye, F. (2002). Beta-normal distribution and its applications. Commun. Stat. Theory Methods, 31: 497-512 · Zbl 1009.62516 · doi:10.1081/STA-120003130 [11] Glanzel, W. (1987). A characterization theorem based on truncated moments and its application to some distribution families. Mathematical Statistics and Probability Theory ( Bad Tatzmannsdorf, 1986)7, Reidel, Dordrecht: 75-84. · Zbl 0631.62020 [12] Glanzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics, A Journal of Theoretical and Applied Statistics, 21\eqrefGrindEQ__4_: 613-618. · Zbl 0716.62015 · doi:10.1080/02331889008802273 [13] Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Commun. Stat. Theory Methods, 27: 887-904. · Zbl 0900.62534 · doi:10.1080/03610929808832134 [14] Hamedani, G. G. On certain generalized gamma convolution distribution II, Technical Report No. 484, 2013, MSCS, Marquette University. · Zbl 1281.60016 · doi:10.2478/jamsi-2013-0001 [15] Hamedani, G. G., Yousof, H. M., Rasekhi, M., Alizadeh, M., Najibi, S. M. (2018). Type I general exponential class of distributions. Pak.j.stat.oper.res. Forthcoming. · Zbl 1509.60039 [16] Lemonte, A., Cordeiro, G. (2013). An extended lomax distribution. Statistics, 47: 800-816. · Zbl 1440.62062 · doi:10.1080/02331888.2011.568119 [17] Merovci, F., Khaleel, M. A., Ibrahim, N. A. and Shitan, M. (2016). The beta type X distribution:properties with application, SpringerPlus, 5:697. · Zbl 1466.62253 [18] Nasir, M. A., Jamal, F., Silva, G. O. and Tahir, M. H. (2018). Odd Burr-G Poisson family of distributions. Journal of Statistics Applications & Probability, 7\eqrefGrindEQ__1_: 1-19. [19] Nichols, M. D. and Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International, 22: 141-151. [20] Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O. and Odetunmibi, O. A. (2017). A New generalization of the Lomax distribution with increasing, decreasing and constant failure rate. Modelling and Simulation in Engineering, Volume 2017, Article ID 6043169, 6 pages. [21] Reyad, H. M. and Othman, S, A. (2017). The Topp-Leone Burr-XII Distribution: Properties and Applications. British Journal of Mathematics & Computer Science, 21\eqrefGrindEQ__5_: 1-15. [22] Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map. Research report. [23] Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Applied Statistics, 36: 258-369. [24] Tahir, M. H., Cordeiro, G. M., Mansoorz, M. and Zubair, M. (2015). The Weibull-Lomax distribution: properties and applications. Hacettepe Journal of Mathematics and Statistics, 44\eqrefGrindEQ__2_: 461-480 · Zbl 1326.60023 [25] Torabi, H. and Montazari, N. H. (2014). The logistic-uniform distribution and its application. Commun. Stat.Simui. Comput, 43: 2551-2569. · Zbl 1462.62110 · doi:10.1080/03610918.2012.737491 [26] Yousof, H. M., Alizadeh, M., Jahanshahic, S. M., Ramires, T. G., Ghosh, I. and Hamedani, G. G. (2017a). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications. Journal of Data Science, 15: 723-740 [27] Yousof, H. M., Rasekhi, M., Afify, A. Z., Ghosh, I., Alizadeh, M. and Hamedani, G. G. (2017b). The beta Weibull-G family of distribution: Theory, characterizations and applications. Pakistan Journal of Statistics, 32\eqrefGrindEQ__2_, 95:116. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.