On pointwise approximation properties of certain nonlinear Bernstein operators. (English) Zbl 1435.41017

Summary: The present study is concerned with the nonlinear Bernstein type operators \(NB_nf\), acting on bounded functions, where the kernel function of the operators provide some convenient assumptions. Especially, some pointwise convergence results for these type operators are achieved at a generalized Lebesgue point of the function \(f\).


41A35 Approximation by operators (in particular, by integral operators)
41A25 Rate of convergence, degree of approximation
Full Text: DOI Euclid


[1] C. Bardaro and I. Mantellini, Pointwise convergence theorems for nonlinear Mellin convolution operators, Int. J. Pure Appl. Math. 27(4) (2006), 431-447. · Zbl 1099.41013
[2] C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, xii + 201 pp., 2003. · Zbl 1030.47003
[3] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto (1953).
[4] H. Karsli, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters, Applicable Analysis, Vol. 85, Nos. 6-7, June-July 2006, 781-791. · Zbl 1110.41011
[5] H. Karsli, On approximation properties of a class of convolution type nonlinear singular integral operators, Georgian Math. Jour., Vol. 15, No. 1, (2008), 77-86. · Zbl 1144.41005
[6] H. Karsli, On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., Vol. 26, No. 2, 2010, 140-152. · Zbl 1224.41070
[7] H. Karsli, On convergence of certain nonlinear Durrmeyer operators at Lebesgue points, Bulletin of the Iranian Mathematical Society, Vol. 41, No. 3, (2015), pp. 699-711. · Zbl 1373.41016
[8] H. Karsli, I. U. Tiryaki and H. E. Altin, On convergence of certain nonlinear Bernstein operators, Filomat, 30:1 (2016), 141-155. · Zbl 1474.41038
[9] H. Karsli, I. U. Tiryaki and H. E. Altin, Some approximation properties of a certain nonlinear Bernstein operators, Filomat, 28(2014), 1295-1305. · Zbl 1474.41039
[10] J. Musielak, On some approximation problems in modular spaces, In Constructive Function Theory 1981, (Proc. Int. Conf., Varna, June 1-5, 1981), pp. 455-461, Publ. House Bulgarian Acad. Sci., Sofia 1983.
[11] R. Taberski, Singular Integrals Depending on Two Parameters, Rocznicki Polskiego towarzystwa matematycznego, Seria I. Prace matematyczne, VII, 1962.
[12] S. N. Bernstein, Demonstration du Th\ueoreme de Weierstrass fond\uee sur le calcul des probabilit\ues, Comm. Soc. Math. Kharkow 13, (1912/13), 1-2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.